

Furnaces Controls Motion Software Waterjet Cutting

TECHNOLOGY

UCLA Dark Matter, 2023

Motivation of SABRE

Sodium-iodide with Active Background RejEction

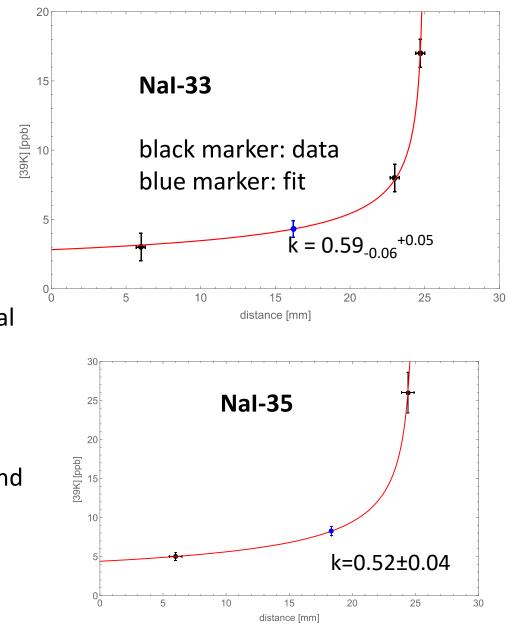
- Probe DAMA/LIBRA model-independent finding with same target material and lower background
- Observed annual modulation ~ 0.01 cpd/kg/keV (dru) in ROI [1,6]keV
- Background ~ 1 dru in ROI
- **STRATEGY in SABRE**
 - Higher signal-to-background ratio by ultra-high purity Nal(Tl) crystals
 ✓ aim to 0.1 dru in ROI
 - North-South «twin» experiments at LNGS(Italy) and SUPL(Australia)
 - ✓ Rule out seasonal effects
 - Proof-of-Principle (PoP) at LNGS
 - \checkmark Exploit active background rejection with a liquid scintillator
 - \checkmark Test crystals radio-purity

Ultra-high radio-purity Nal(Tl) detectors

- At the time SABRE was conceived by Frank Calaprice (Princeton Univ) (~2010) the main background sources under consideration were mainly ⁴⁰K at DAMA/LIBRA level ~10-20ppb and ²³⁸U, ²³²Th, and ⁸⁷Rb
- Two considerations were driving the project
 - \checkmark Grow crystals from a low potassium powder
 - ✓ Improve ⁴⁰K rejection by a high radio-purity liquid scintillator veto
- The effort made led to the following results
 - ✓ the Astro Grade NaI powder was developed in collaboration between Princeton University and Sigma-Aldrich with potassium < 10ppb after fractional crystallization purification</p>
 - ✓ test crystals with potassium < 10ppb were grown
 - ✓ a PoP with the Borexino liquid scintillator was designed and built at LNGS showing 84% efficiency in rejection of ⁴⁰K

Nal(TI) crystal production for SABRE

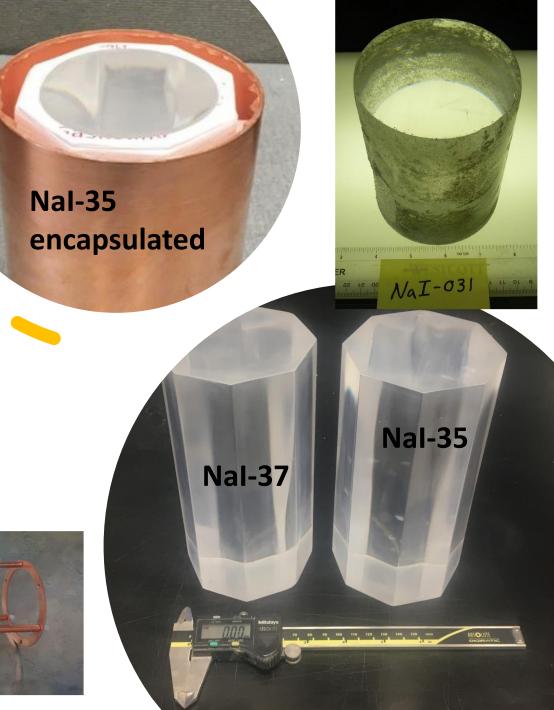
- Crystals are grown from Astro Grade
 - ✓ a few ppt in U, Th and a few ppb in K and Rb
- The Bridgman method has been selected to mitigate the risk of contamination during growth


✓ molten material is sealed inside a cleaned crucible

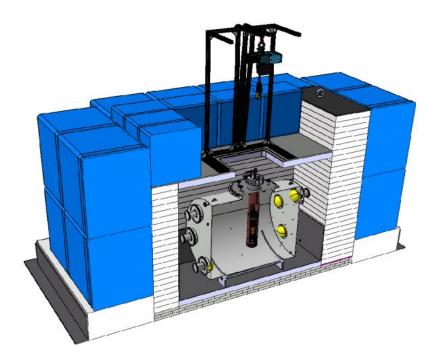
• Crystal growth is performed by the industrial partner Radiation Monitoring Devices (RMD)

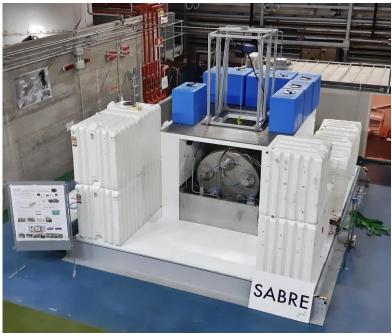
✓ some quality controls are performed prior to underground counting

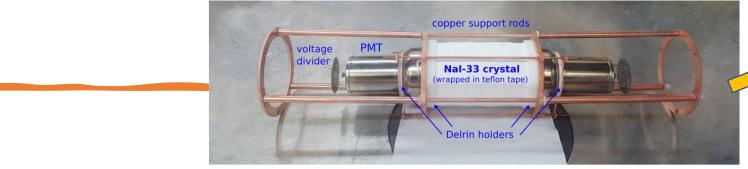
ICP-MS screening of tip and tail samples after growth


- radio-purity characterization is performed after growth on tip and tail samples to make a first assessment of the crystal quality
- ³⁹K < 10ppb, ⁸⁵Rb ~ 1ppb, U/Th < 0.1ppb
- These results to be compared with direct counting underground

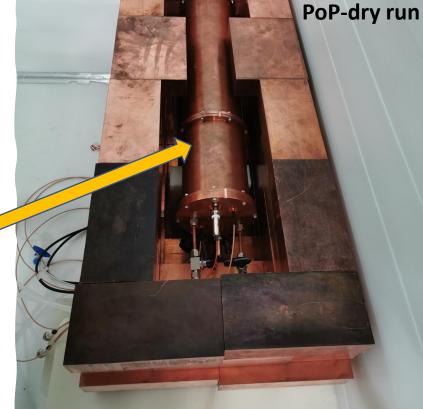
Grown crystals and underground at LNGS

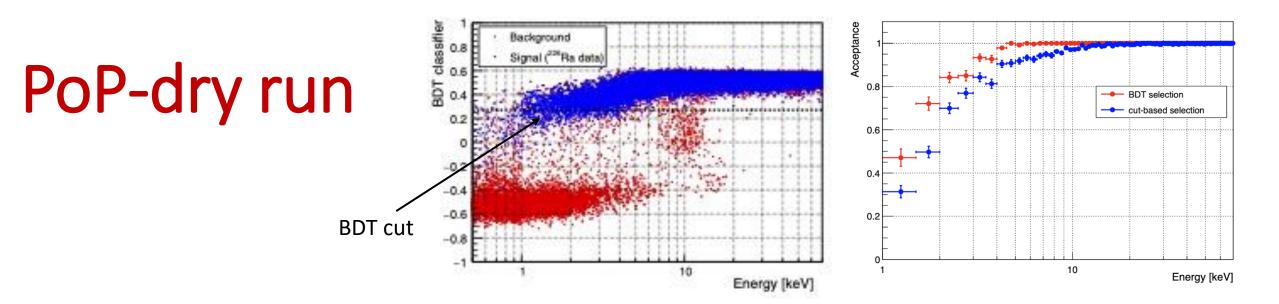

- Nal-31 at LNGS since April 2019
- Nal-33 since August 2019, assembled in Princeton
- Nal-35 since May 2022, assembled at RMD
- Nal-37 since March 2022, naked and encapsulated at LNGS

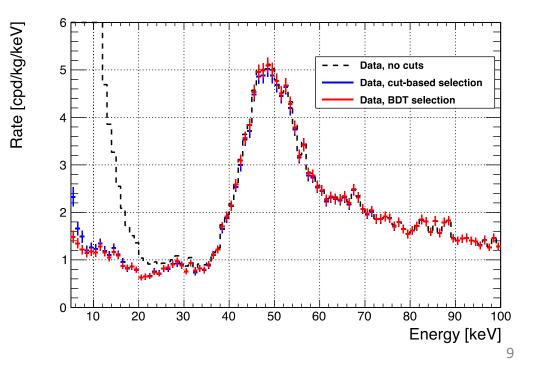


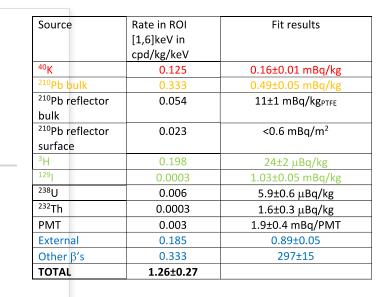

PoP at LNGS

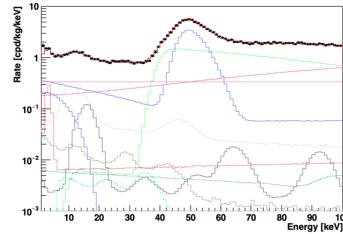
- Run in 2020 with Borexino liquid scintillator and NaI-33
 ✓ 2 tons LS active veto with 10 8-inch PMTs + H₂O shielding
- Exploited successfully ⁴⁰K tagging with sensitivity at the level of 1ppb
- Demonstration by direct counting of first crystal production after DAMA/LIBRA with background in [1,6]keV of order 1dru
- Identified main background sources:
 - ✓ ²¹⁰Pb in crystal bulk equal to 0.51±0.02 mBq/kg
 - \checkmark Confirmed ICP-MS estimation for $\,{}^{40}\text{K}$ contamination

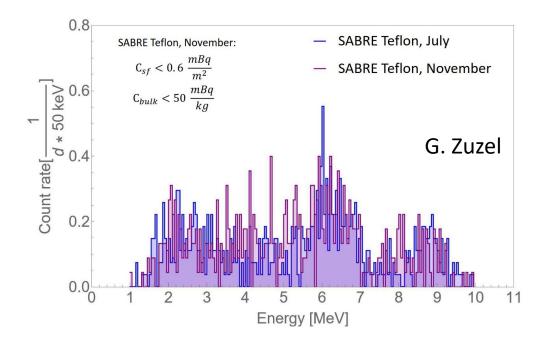



Beyond the PoP run


- The low potassium level wrt to the original 10-20ppb assumed and <u>restrictions</u> at LNGS for LS use, led us to consider a passive shielding design for SABRE-North
- To elaborate this idea we have taken data with NaI-33 inside the PoP w/o LS with an improved Cu shielding (**PoP-dry run**)
- After PoP set-up desommissiong we have built a full low ²¹⁰Pb Cu shielding (30cm) set-up for crystal characterization

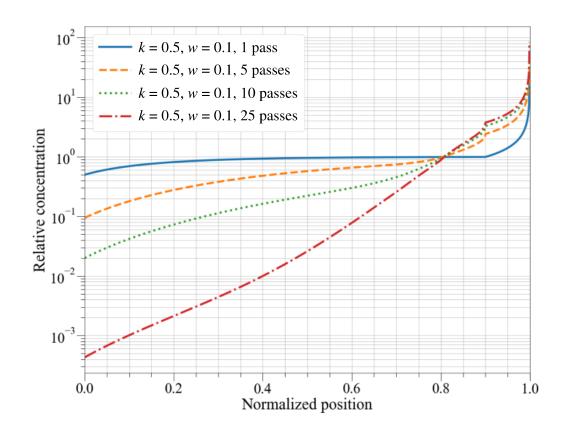

- 891 kg x day exposure with Nal-33
- Noise reduction by BDT
- Rate in ROI dominated (60%) by external background
- ⁴⁰K in ROI only 10% of total rate
- Rate in ROI = 1.39±0.03 dru




PRELIMINARY

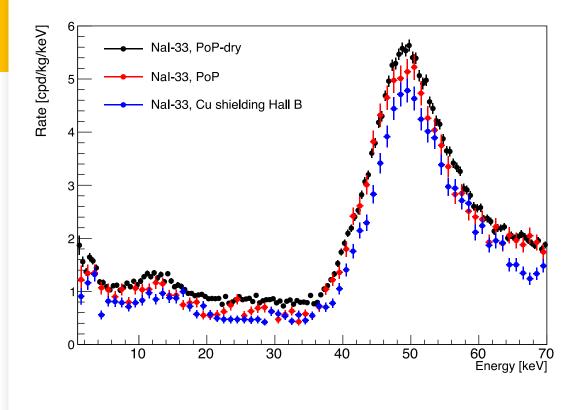
PoP-dry background breakdown

- ³H expected 37±10 µBq/kg for 10 months surface exposure and 24 months underground
 - ✓ Possible reduction due to storage in B level below ground at Princeton
- ^{210}Pb in PTFE reflector within upper limits by α spectroscopy
- $^{\rm 210}{\rm Pb}$ in bulk consisted with α tagging by PSD based on amplitude-weighed mean time


Zone refining purification in SABRE

- Strategic and unique to the SABRE project is the idea to zone refine the powder prior to growth
- A zone refiner suitable for order of 100 kg crystal production has been built in collaboration with MELLEN
- The zone refiner is being moved to RMD for growing a test crystal by the end of the summer

Performance of ZR purification



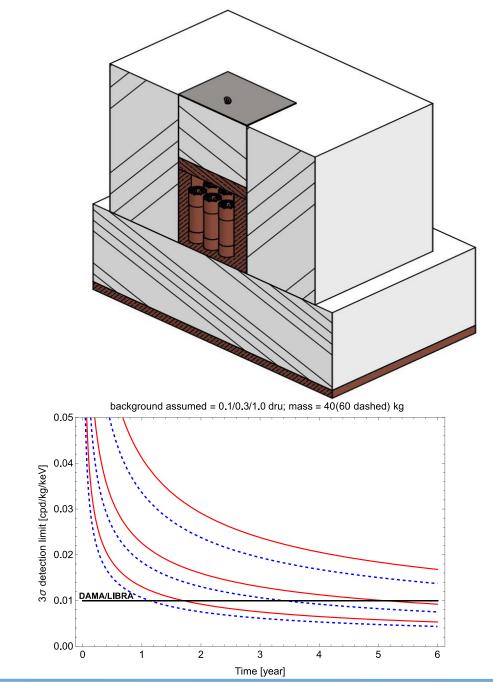
Different segregation coefficients (k<1) of impurities in molten vs solid phase

744 g of AG powder and 53 passes at ~ 6 cm/h

Isotope	Impurity concentration (ppb)							
	Powder	S_1	S_2	S_3	S_4	S_5		
³⁹ K	7.5	< 0.8	< 0.8	1	16	460		
²⁰⁸ Pb	1.0	0.4	0.4	< 0.4	0.5	0.5		
85 Rb	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7		
²⁴ Mg	14	10	8	6	7	140		
¹³³ Cs	44	0.3	0.2	0.5	3.3	760		
138 Ba	9	0.1	0.2	1.4	19	330		

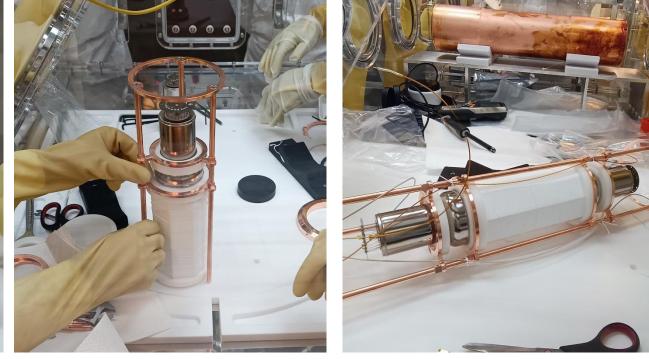
impurities are pushed to the end of the refining tube at different level and eliminated from the material selection before the growth

	Mass [kg]	LY ^{****} [pe/keV]	³⁹ K [ppb]	²¹⁰ Pb [mBq/kg]	Rate ROI [1,6]keV		
Nal-31	3.00	9.1±0.1	16.5±1.1	1.02±0.07	2.74±0.03		
Nal-33*	3.40	12.1±0.2	4.3±0.6	0.51±0.02	1.20±0.05		
Nal-33**	3.40	11.1±0.2	4.3±0.6	0.51±0.02	1.39±0.03		
Nal- 33 ^{***}	3.40	11.1±0.2	4.3±0.6	0.51±0.02	0.95±0.05		
Nal-35	4.36	~9	8.3±0.6	0.49±0.2	-		
Nal-37	4.35	~8	8.0±0.6	0.80±0.01	-		


Data from tested crystals

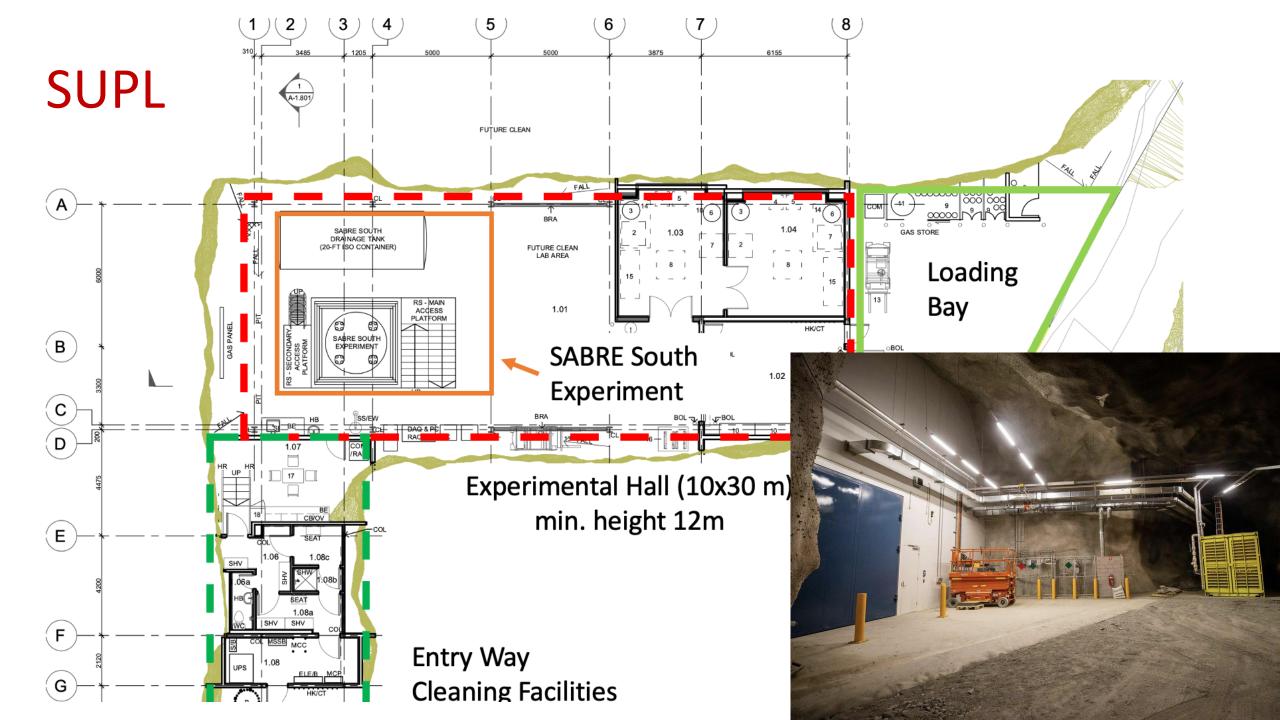
- * PoP run
- ** PoP-dry run
- *** NaI-33 in 30cm Cu shielding
- **** from ²⁴¹Am (59.5 keV)

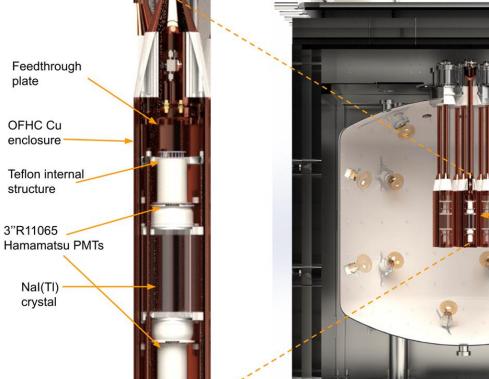
preliminary


Preliminary design of SABRE-North

- 3 x 3 matrix of \approx 5 kg NaI detectors
- Inner 5 mm thick Cu box
- Vertical crystal deployment
- 15 cm Cu and 80 cm PE shielding structure
- 10 cm Cu basement
- MC predicted background from environmental gamma and neutrons ~0.01dru in the ROI
- Overall shielding dimensions and mass:
 3 x 3 x 3 m³, ≈30 t

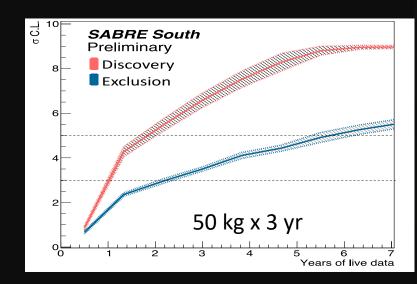

Sensitivity to annual modulation


Operation for Nal-37 in underground Radon-free clear room (400mBq/m³) previously built for DarkSide-50


Stawell Underground Physics Laboratory (SUPL) and SABRE-South

- SUPL is in an advanced outfitting phase with 2900 m.w.e. overburden
- SABRE-South
 - ✓ Same detector module concept
 - ✓ Common DAQ and simulations
 - ✓ Same crystals
 - \checkmark Active veto with LAB from JUNO
 - From MC simulations efficiency to reject ⁴⁰K is 85.4%
 - <10% background from noncrystal sources in ROI

SABRE-South detector


EJ200 scintillators for muon detection and rejection

Steel and PE shielding to reduce environmental background

7 Nal(TI) crystals (each equipped with 2 R11065 PMTs) in Cu enclosures

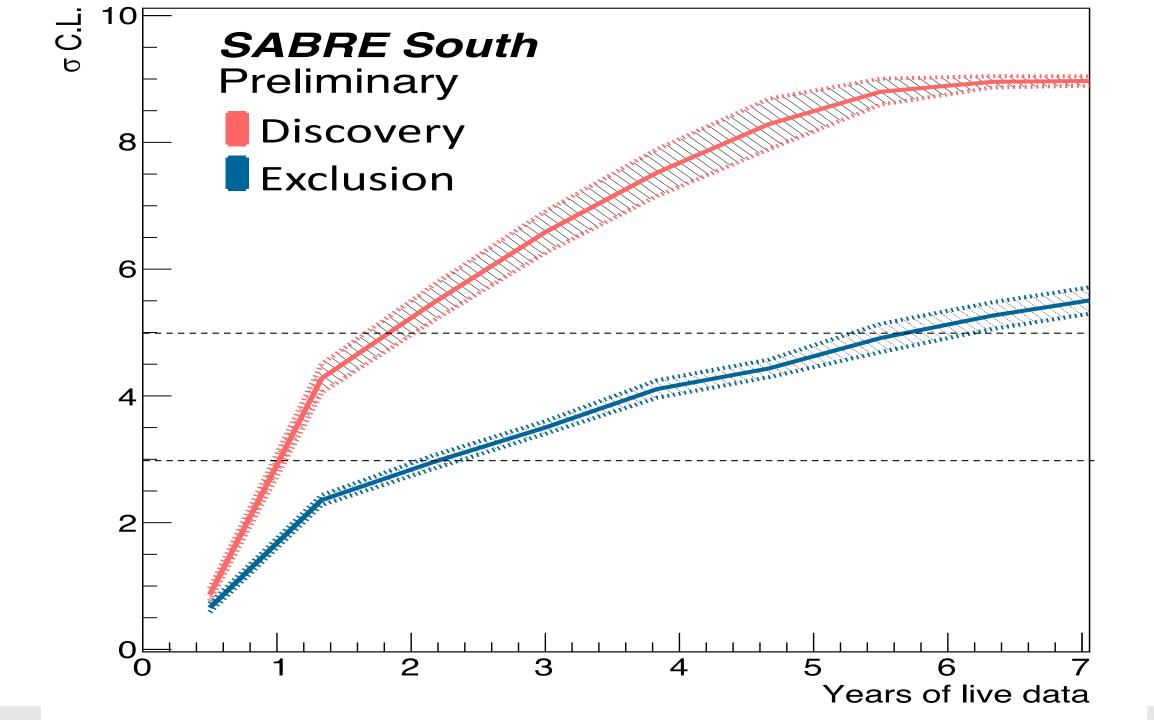
18 R5912 PMTs for veto

 Veto vessel filled with 10T of LAB doped with PPO and Bis-MSB

Conclusions

- The main goal of SABRE is to deploy two nearly identical detectors in the Northern and Southern Hemispheres
- SABRE aims to focus on ultra-high purity NaI(TI) detectors (0.1-0.3 dru in the ROI)
 - ✓ Currently, four crystals underground at LNGS
 - ✓ Two more crystals foreseen by 2023 to complete crystal characterization prior to production
- By 2023 finalize the strategy for crystals mass production for both SABRE-North and SABRE-South

 We aim to demonstrate that ZR is a key technique for ultra-high radio-purity NaI-based detectors
- SABRE-South full detector deployment by mid 2024
- SABRE-North new underground site outfitting by 2024


Publications

- SABRE: A new Nal(Tl) dark matter direct detection experiment, Physics Procedia 61 (2015) 169 178
- The SABRE project and the SABRE Proof-of-Principle, Eur.Phys.J.C 79 (2019) 4, 363
- Monte Carlo simulation of the SABRE PoP background, Astropart. Phys. 106 (2019) 1-9
- Growth of ultra-high purity NaI(TI) crystals for dark matter searches, Phys. Rev. Res. 2 (2020) 1, 013223
- <u>Characterization of SABRE crystal NaI-33 with direct underground counting</u>, *Eur.Phys.J.C* 81 (2021) 4, 299
- Zone Refining of Ultrahigh-Purity Sodium Iodide for Low-Background Detectors, Phys. Rev. Applied 16 (2021) 1, 014060
- <u>High sensitivity characterization of an ultrahigh purity NaI(TI) crystal scintillator with the SABRE proof-of-principle</u> <u>detector</u>, *Phys.Rev.D* 104 (2021) 2, L021302
- Performance of the SABRE detector module in a purely passive shielding, Eur. Phys. J.C 82 (2022) 12, 1158
- SABRE-South simulation paper submitted to EPJC. <u>https://arxiv.org/abs/2205.13849</u>

Thank you!

Ongoing activities for 2023

- Characterization of Nal-35 and Nal-37 at LNGS
- Performed several assembly activities to test different PTFE reflectors and enclosure design in an underground Radon-free clean room
- Ugrade of zone refiner at MELLEN
- Outfitting laboratory space at RMD for zone refining and tests for growth after zone refining
- Start feasibility study with APL Engineered Materials, Inc. for high-purity powder production
- Outfitting of SUPL and deployment of SABRE-South detector, almost completed
- Fluid handling and shielding construction for SABRE-South

