Recent Dark-Sector Results from Belle II

Steven Robertson

Institute of Particle Physics & University of Alberta

On behalf of the Belle II Collaboration

UCLA Dark Matter 2023 March 30, 2022

Dark sectors

Dark matter may carry charges for non-SM gauge interactions, possibly acquiring mass via dark-sector Higgs etc.

 Effective Field Theory (EFT) provides a number of "portals" to access this dark sector:

$$\mathcal{L} = \sum_{n=k+l-4} \frac{c_n}{\Lambda^n} \mathcal{O}_k^{(\mathrm{SM})} \mathcal{O}_l^{(\mathrm{med})} = \mathcal{L}_{\mathrm{portals}} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

$$= -\frac{\epsilon}{2}B^{\mu\nu}A'_{\mu\nu} - H^{\dagger}H(AS + \lambda S^2) - Y_N^{ij}\bar{L}_iHN_j + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

Electron-positron collider production mechanisms:

- Production of on-shell dark bosons via $e^+e^- \rightarrow \gamma Z'$ "radiative" and $e^+e^- \rightarrow f f Z'$ "Z-strahlung" processes
- Light dark-sector particles can be produced in decays of B and D mesons

Recent results:

•

arXiv:2212.03066[hep-ex]

- $Z' / S \rightarrow \tau^+ \tau^-$
- Long-lived spin–0 boson in $b \rightarrow s$ decays

Additional results (not presented):

Invisible Z' in $e^+e^- \rightarrow \mu^+\mu^- Z'$

- $\tau^+ \rightarrow l^+ \alpha$ (invisible scalar boson) arXiv:2212.03634[hep-ex]
- Dark Higgsstrahlung (invisible h' + A') Phys.Rev.Lett. 130 (2023) 7, 071804

Belle II experiment

Hadrons)(nb)

↑ 10

σ (e⁺e`

20

15

r(1S)

9,44 9,46 10.00 10.02

r(2S)

Belle II experiment at SuperKEKB collider is an e^+e^- asymmetric-energy B factory

- Target data sample of 50 ab⁻¹, ~30x combined data set of previous experiments
 - ~100 billion B mesons in final data set
- Physics data taking began in 2019 current results based on < 1% of target data sample

Optimized for tracking and B vertex reconstruction, K - π particle identification, and precision calorimetry

Y(3S)

10.37

Mass (GeV/c²)

10.54

CUSB (https://inspirehep.net/experiments/1109659)

10.34

7 GeV

- Clean environment with large solid-angle detector coverage and good missing energy reconstruction
- Inclusive trigger (N_{tracks}>3) + dedicated low-multiplicity triggers
- Potential to reconstruct displaced vertices in $\sim 1 \text{ mm} < c\tau < \sim 10 \text{ cm} (\sim 100 \text{ cm})$, with c > ~3 m being "missing energy"

4 GeV

10.62

Ϋ́(4S)

10.58

$L_{\mu} - L_{\tau}$ gauge boson (Z')

 $L_{\mu}-L_{\tau}$ gauge boson Z' couples only to 2^{nd} and 3^{rd} generation leptons

- Avoids stringent existing limits on electron and quark couplings
- Could explain $(g-2)_{\mu}$ and other flavour anomalies
- $Z' \rightarrow v\overline{v}$ process (mostly relevant for $m_{Z'} < 2m_{\mu}$). More generally Z' could be mediator to dark sector, coupling to dark χ via $Z' \rightarrow \chi\overline{\chi}$

 $e^+ e^- \longrightarrow \mu^+ \mu^- \textbf{+} \textbf{E}_{miss}$

Z' produced by "Z'-strahlung" process from final-state muon

• Previous limits by BABAR and Belle on $Z' \rightarrow \mu^+ \mu^-$

Z' reconstructed in recoil of di-muon pair

- 2-track trigger w/ muon $p_T^{\mu} > 0.4$ GeV/c
- No extra energy (γ, π^0) present in the event

$Z' \rightarrow invisible$

Submitted to PRL arXiv:2212.03066 Based on 79.7 fb⁻¹

Backgrounds originate from QED processes which mimic the $\mu^+\mu^-$ + missing energy final state, typically due to detector acceptance effects:

- $e^+e^- \rightarrow \mu^+\mu^-\gamma(\gamma)$ undetected photon(s)
- $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
- muonic τ decays and mis-ID
- $e^+e^- \rightarrow \mu^+\mu^-e^+e^$
 - missing e^+e^-

Neural Net based on kinematic variables optimized for background suppression

Z', S $\rightarrow \tau^+ \tau^-$

Entries

Extend Z' search to permit additional visible particles in final state:

where X = Z' or S

- Z' or (leptophilic) scalar S
- 4 track signal topologies:

 $2\mu + 2(e,\mu,\pi)$

- Search for a $\tau^+\tau^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^- \tau^+\tau^-$
- Missing mass signature in recoil of μ⁺μ⁻ system

- Substantial backgrounds from continuum di-lepton production (e.g. μ⁺μ⁻γ, τ⁺τ⁻)
- Neural net trained to identify distinctive signal kinematics

Backgrounds underestimated in simulation due to known missing contributions

Z', $S \rightarrow \tau^{T} \tau^{T}$

 10^{3}

90% CL limits set on the Z' production cross section and scalar couplings

First constraints on scalar S for $m_{\rm S} > 6.5 \, {\rm GeV/c^2}$

 $(q-2)_{\mu}\pm 2\sigma$

 $\int \mathcal{L} dt = 63.3 \text{ fb}^{-1}$

Expected UL $\pm 2\sigma$

Expected UL $\pm 1\sigma$

q

10

Belle II

90% CL

8

Signal extracted as fits to the $\mu^+\mu^$ recoil mass spectrum

- "Bump hunt" for a narrow peak above a smoothly varying background
- No significant excess observed •

Long-lived spin-0 boson in b \rightarrow s transitions

Many "new physics" scenarios include a light scalar (S) that mixes with Standard Model Higgs boson

 $\mathbf{B} \rightarrow \mathbf{KS}$

- Singlet field ϕ which mixes with SM Higgs with mixing angle θ
- If this field couples to dark sector χ , then S can act as a "scalar portal" to dark sector

For m_S below the B meson mass decays to $2m\chi > m_S$ to yield correct relic density

- Therefore $S \to SM$ particles
- For small mixing angle, S is long-lived

S can be produced in $b \rightarrow s$ flavour changing neutral current processes by coupling to heavy intermediate particles (e.g. t quarks)

- Experimental signature would be a $B \to KS$ with a reconstructed displaced S decay vertex

Eight exclusive decay B modes:

$$\begin{array}{l} B^{+} \rightarrow K^{+} \ S \\ B^{0} \rightarrow K^{*0} \ S \quad (\ K^{*0} \rightarrow K^{+} \pi^{-}) \\ \text{where} \\ S \rightarrow \ e^{+} e^{-}, \quad \mu^{+} \mu^{-}, \quad \pi^{+} \pi^{-}, \quad K^{+} K^{+} \end{array}$$

• No missing particles; B meson is fully reconstructed

Require S candidate vertex to be "significantly" displaced from primary interaction vertex

- LLP performance validated using ${K_s}^{\boldsymbol{0}}$ control samples
- K_s⁰ mass region vetoed to suppress SM backgrounds

- Exploit B decay kinematics to ensure clear selection of signal candidates
- Background primarily arise from $e^+e^- \rightarrow q\bar{q}$ combinatorial sources

Perform a "bump hunt" in the S candidate reduced mass:

 $B^+ \rightarrow K^+ S$

 $\times B(S \rightarrow X^+ X$

 10^{-6}

 10^{-7}

-8 10

 $B^0 \rightarrow K^*S$

(D)

S→e

Probe S lifetimes in range 0.001 < $c\tau$ < 400 cm

- Scalar mass sensitivity depends on S decay mode
- Model independent limits on LLP decay branching fractions for each decay mode
- Interpretation as a dark scalar S : (PBC BC4) Phys. Rev. D 101, 095006 (2020)

Prospects

Belle II is now approaching an integrated luminosity which is directly competitive with the previous generation of B factories

- Improvements in detector, trigger, and analysis strategies have enabled searches for new physics with early Belle II data
- Interesting and competitive sensitivity in a variety of dark sector searches with current data set; very active ongoing program!

Additional material

Belle II luminosity

First Belle II physics data recorded in 2019

- Total integrated luminosity of 362 fb⁻¹ at $\Upsilon(4S)$
- 42 fb⁻¹ recorded 60 MeV below $\Upsilon(4S)$ ("offpeak")
- 19 fb⁻¹ at 10.8 GeV for exotic hadron studies

Belle II physics program

Broad physics program for precision characterization of CKM matrix elements and CP-violation in the B meson sector

- Tree and loop-level (e.g. FCNC) processes probed to test for evidence of beyond Standard Model contributions
- High statistics with 50 ab⁻¹ target data set

Process	σ (nb)
bb	1.1
C	1.3
Light quark $q\overline{q}$	~2.1
$\tau^+\tau^-$	0.9
e ⁺ e ⁻	~40

Very extensive program of non-B physics as well:

 $B^0 \rightarrow \phi K_{s_1}^0$...

- Tau, charm precision measurements and rare decay searches
- Quarkonium and "exotic states"

 $B \rightarrow K \nu \overline{\nu}, ...$

Light Higgs, Z', dark sector etc.

*

Simplest dark sector scenario: add a new U(1) gauge symmetry, with associated charge carried by dark-sector fermions

 Spin-1 gauge boson "dark photon" A' (or γ_d, or Z_d in non-minimal models) can mix with SM photon, providing a "portal" to the dark sector.

Dark photon

Kinetic mixing:

$$\frac{1}{2}\epsilon F^{Y}_{\mu\nu}F'^{\mu\nu}$$

 $\ensuremath{\varepsilon}$ is the strength of the kinetic mixing

• E could be as large as 10^{-2} for $m_{A'}$ in the GeV range

Lifetime: $\tau_{A'} \sim 1/(\varepsilon^2 m_{A'})$

- Decays can either be "prompt" (relative to experimental resolution) or "displaced" (relative to production vertex)
- Decays to SM particles depend on kinematic accessibility, and details of model

... however, dark sector could be much more extensive, with one or more Abelian or non-Abelian interactions, fermions and Higgs bosons

 $\Lambda \Lambda \Lambda$

$au^+ o l^+ lpha$ (invisible scalar boson)

$\rightarrow l^+ \alpha$ (invisible boson)

90% C.L. upper limits on LFV τ decay

10

10

B factories are also tau lepton factories: ~1 million $\tau^+\tau^-$ pairs per fb⁻¹

- Dedicated low-multiplicity trigger lines • to ensure high efficiency
- Neutrino-less and Lepton Flavour • Violating (LFV) tau decays are a sensitive probe of new physics

 $\tau^+ \rightarrow l^+ \alpha$ can arise in new physics models such as light long-lived ALPs

Long-lived α does not interact in detector •

$t^+ \rightarrow l^+ \alpha$ (invisible boson)

At B factories, $\tau^+\tau^-$ pairs are produced back to back and boosted:

- Require a 1 3 event topology, i.e. 4 tracks with $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \nu$ in one event "hemisphere"
- Veto events with additional neutrals (γ , π^0)
- Backgrounds from continuum qq, di-lepton and 4-fermion sources

- Signal is similar to $\tau^+ \rightarrow l^+ vv$, except that the lepton is mono-energetic in the τ rest frame
- "Bump hunt" in the lepton energy spectrum
- Signal peak smeared by resolution of τ rest frame:

Accepted by PRL arXiv:2212.03634

Based on 62.8 fb⁻¹

No significant excess seen in either e or μ mode:

• CLs method to determine 95% C.L. upper limits on branching fraction

Substantial improvement over previous limits ARGUS Collaboration Z. Phys. C 68, 25 (1995)

Dark Higgsstrahlung

Dark sector (invisible h' + A')

Dark sector Higgs h' can give mass to dark photon A' through usual SSB mechanism

- No mixing of h' with SM Higgs
- h' coupling to A' is α_D so overall process depends on $\epsilon^2 \alpha_D$

Experimental signature depends on mass hierarchy:

 $M_{h'} > M_{A:}$

- h' \rightarrow A' A' (6 track signature)
- Previous BABAR and Belle searches

 $M_{h'} < M_{A'}$ This search

- h' is long-lived (i.e. undetected)
- Experimental signature is 2D peak in $m_{A'} = m_{\mu\mu}$ and $m_{h'} = m_{recoil}$

Dark sector (invisible h' + A')

March 30, 2023 Recent Dark-Sector Results from Belle II

Steven Robertson

Dark photon

Experimentally, the important feature is a reconstructable narrow A' resonance in a clearly defined topology, i.e a "bump hunt"

- E.g. search for decay of $e^+e^- \rightarrow \gamma A'$ via $A' \rightarrow \chi \overline{\chi}$ or into SM particles
 - "visible" $A' \rightarrow l^+ l^-$, decaying promptly or with a displaced vertex
 - "Invisible" A' decays, with A' mass determined from missing energy constraints

Dark Forces

Dark matter interactions mediated by new U(1) gauge boson A' "dark photon" which can mix with SM photon

- Search for decay of $e^+e^- \rightarrow \gamma A'$ via $A' \rightarrow \chi \chi$ or into SM particles
 - "visible" $A' \rightarrow l^+ l^-$. or
 - "Invisible" A' decays, with A' mass determined from photon energy

.... however, dark sector could be much more extensive, with one or more Abelian or non-Abelian interactions, fermions and Higgs bosons

Can potentially be detected via one of a number of "portals" coupling the Dark Sector to the SM:

Vector Portal Scalar Portal **Pseudoscalar Portal** → *Axion-like Particles* **Neutrino Portal**

- Dark Photon, Z'
- \rightarrow Higgs/Dark Scalars
- \rightarrow Sterile Neutrinos
- Sensitivity studies performed in the context of "Belle II physics book" (B2TiP): arXiv:1808.10567 [hep-ex]; ALP sensitivity studies: arXiv:1709.00009[hep-ph]

Typically, these are narrow resonance ("bump hunt") searches in lowmultiplicity data samples

Dark Sector @ B Factories

- Clean e⁺e⁻ environment with hermetic (near 4π) detector coverage; good missing energy reconstruction
- Potential to reconstruct displaced vertices in $\sim 1mm < c\tau < \sim 10cm$ ($\sim 100cm$), with $c\tau > \sim 3m$ being "missing energy"

