Cosmological probes of DM physics

Mass, interactions, thermal history

Vera Gluscevic University of Southern California

Cosmological probes of DM physics

arxiv 2301.08299 2301.08260 2209.04499 2010.02936 2008.00022 1904.10000

Karime Maamari

Adam He

Trey Driskell

Rui An

Ethan Nadler

Also: Mikhail Ivanov, Jordan Mirocha, Yue Zhang, Kim Boddy, Andrew Benson, Risa Wechsler, +DES and ACT Collaborations.

DM microphysics at the small-scale frontier

Lyman-alpha forest, dwarf galaxies, stellar streams, galaxy clustering, strong and weak lensing, intensity mapping, etc.

Near-field Cosmology (Milky Way satellites)

Interactions of sub-GeV DM with the Standard Model

$$\sigma_{MT} = \sigma_0 v^n$$

Maamari, Gluscevic,+ (2021), arXiv:2010.02936

DM-proton scattering bounds

Maamari, Gluscevic,+ (2021), arXiv:2010.02936

Shi-Fuller mechanism is ruled out (for 100% DM)

*Including: realistic modeling of galaxy-halo connection (incl. disruption of subhalos by the Milky Way disk) and mock observations of the satellite abundance (luminosity, size, and radial distribution).

Ethan Nadler (USC/Carnegie) Neutrino self-interactions save sterile neutrino DM?

Sterile neutrinos + neutrino self-interactions

$$\mathcal{L} \supset \frac{\lambda_{\phi}}{2} \nu_{a} \nu_{a} \phi + \text{h.c.}$$

$$\nu_{a} \qquad \nu_{a} \qquad$$

Sterile neutrinos + neutrino self-interactions

11

Power suppression from sterile neutrino free streaming:

An, Gluscevic, Nadler, Zhang (2023)

IDM transfer + N-body simulations + galaxy-halo model

Talk by Ethan Nadler @ 10.30

Ethan Nadler

Andrew Benson

21- cm intensity mapping

Global 21-cm signal with IDM

Altered thermal history:

Driskell + (2022) Munoz+ (2016) EDGES collab. (2018)

Global 21-cm signal with IDM

Suppression of structure:

(Not included in previous modeling)

Driskell + (2022)

Global 21-cm signal with IDM

Trey Driskell

Global 21-cm signal with IDM

Millicharge cannot explain the EDGES signal. V^-4 Coulomb-like scattering is further constrained by the timing of the signal.

Trey Driskell

Driskell + (2022)

LSS and tensions

Does IDM alleviate S8 tension?

Adam He

- Pre-tension physics
- Consistent across data
- Does not mess up H0
- Imminently falsifiable with small scale structure!

He, Ivanov, An, Gluscevic (2023)

Model	$\Lambda \text{CDM}, Planck + \text{BOSS} + \text{DES}$	IDM, $Planck + BOSS + DES$
$\sigma_0 \ [10^{-26} \ { m cm}^2]$	_	$13.23\ (5.163)^{+5.2}_{-6.5}$
S_8	$0.813~(0.813)\pm 0.009$	$0.794~(0.804)^{+0.009}_{-0.01}$
$\Delta\chi^2_{ m min}$	_	-6.7

Key Points

• Small scale structure is sensitive to DM physics. **MW satellites** drive a non-CDM frontier.

• Sterile neutrino DM is heavily constrained by small scale structure, regardless of the particle spectra.

• **DM-baryon scattering** alleviates S8 tension, through scaledependent power suppression.

• **21cm signal** requires accurate modeling of structure formation + thermal history.