

First measurement of low-energy He & e⁻ recoil discrimination for sub-GeV dark matter searches in doped LXe TPCs (HydroX)

Scott Haselschwardt (LBNL)

On behalf of... LBNL team: R. Gibbons, H. Chen, S. Kravitz, A. Manalaysay, P. Sorensen, and Q. Xia and our HydroX collaborators

UCLA DM 2023 March 31, 2023

Direct Detection Landscape

Liquid xenon TPCs lead the search for >5 GeV dark matter

Direct Detection Landscape

but inefficient kinematics and detector threshold limit low-mass reach...

Direct Detection Landscape

HydroX: proposed LZ upgrade to dissolve H₂ into the LXe

Dissolved **hydrogen** nuclei become the **dark matter target**

Xenon is the sensor

Why HydroX?

Most of the experiment is built!

Utilize well-understood LZ background environment

- "self-shielding" of external backgrounds
- veto systems + water tank + extreme cleanliness

Expected high signal yield

- H or He recoils expected to give largely electronic excitations (less to heat)

High spin-dependent sensitivity

- Lone proton for SD_{proton} Deploy deuterium for SD_{neutron} reach -

Current HydroX Efforts and R&D

UC SANTA BARBARA

Henry Machine @ UCSB:

Measure Henry coeff. for light elements in LXe & LAr

Understand cyro properties of light gas mixtures

Tests of injection/extraction

HydroX @ SLAC: Measure impact of H₂ on TPC signals:

Impact on S2 (charge) signal

Purification + circulation with mixed H_2 +LXe

XENIA @ Imperial:

Imperial College

high granularity SiPM readout $(\sigma_r \sim 150 \ \mu m)$

Measure electron transport/drift properties in H_2 -doped LXe TPC for improved $0\nu\beta\beta$ sensitivity

HydroX @ LBNL:

Low-energy DM signal calibration:

Measure light and charge yields of recoiling He and H in doped LXe TPC

HydroX Institutions:

UCSBPenn StateLBLMichiganSLACImperial College LondonSURFNorthwestern

Projected Physics Reach

250 livedays

2.2 kg of H_2 in LXe (2.6% mol fraction)

Signal yields from SRIM + LZ detector response

No discrimination between ER backgrounds and H-recoil signals assumed!

Is there ER/light-element discrimination in LXe?

Rest of this talk:

Results from development of a "degraded alpha" (**He-recoil**) source

Provide **first look** at what we can expect for discrimination in a LXe TPC

See Hao Chen's CrystaLiZe talk using same TPC @ LBNL

Source Details

Activity deposited on gold foil

Sealed and installed in LBNL TPC

Source characterization in a CCD

DESI CCD w/ ~180 nm dead layer & 250 µm active

>20 keV α 's penetrate dead layer

Continuum α energy down to 0 keV

Scott Haselschwardt, LBNL

⁹⁹Tc β Source Calibration

Overall $\boldsymbol{\beta}$ shape agrees with Geant4 prediction

X-ray peaks from gold foil (~10 keV) and silver epoxy (~22 keV) used to tune NEST

- Fit electric field = 774 ± 75 V/cm agrees with field simulation
- Provides expectation for ER & Xe NR

Surface effects produce extra charge above X-ray peaks

⁹⁹Tc **β** Source Calibration

Overall $\boldsymbol{\beta}$ shape agrees with Geant4 prediction

X-ray peaks from gold foil (~10 keV) and silver epoxy (~22 keV) used to tune NEST

- Fit electric field = 774 ± 75 V/cm agrees with field simulation
- Provides expectation for ER & Xe NR

Surface effects produce extra charge above X-ray peaks

Degraded α (He) source data

Low-energy He recoils **well separated** from ER and Xe recoils!

Background ER's in α source data agree with β band prediction

Impact of cathode surface to be understood

Summary

- HydroX: a well-motivated proposal to search for low-mass DM by dissolving the lightest nuclei (H₂, He) in the LZ LXe TPC
- Leverages success and advantages of large, LXe TPCs
- R&D across multiple institutions underway
- New measurements suggest good discrimination of He recoils from electron-recoil backgrounds promising results for HydroX!

Extra slides

Liquid Xenon TPC Operational Principle

High voltage grids provide electron drift to liquid surface

Top PMT array hit pattern gives (x,y)

Time between S1 & S2 gives depth

S2/S1 ratio gives **particle ID** between:

Nuclear Recoils -

neutrons WIMPs

Electron Recoils -

 β & EC decays Compton Scatters

Liquid Xenon TPC Operational Principle

Solubility Data

Figure 3: Solubilities of various gases in cold liquids as a function of temperature. Methane(Argon/Xenon) as a solvent are shown in diamonds(triangles/circles). The various solutes are labeled and distinguished by color. The solubilities in liquid xenon measured by LUX and associated small setups are substantially higher than those in methane and argon.

Estimates on alpha energy scale

