

Sub-GeV dark matter searches with SENSEI

Kelly Stifter, for the SENSEI collaboration UCLA Dark Matter Conference 3/31/2023

The SENSEI collaboration

Fermilab: A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner, J. Estrada, G. Fernandez Moroni, N. Saffold, M. Sofo Haro, L. Stefanazzi, K. Stifter, J. Tiffenberg, S. Uemura

Stony Brook: P. Adari, R. Essig, A. Singal, Y. Wu

Tel Aviv: L. Barak, E. Etzion, Y. Korn, A. Orly, T. Volansky

U. Oregon: A. Desai, T.-T. Yu

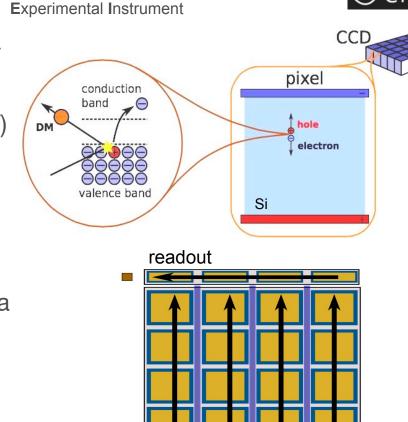
Buenos Aires: M. Cababie, S. Perez, D. Rodrigues

U.C. Berkeley: I. M. Bloch

SNOLAB: I. Lawson, S. Luoma, S. Scorza

LBNL: S. Holland

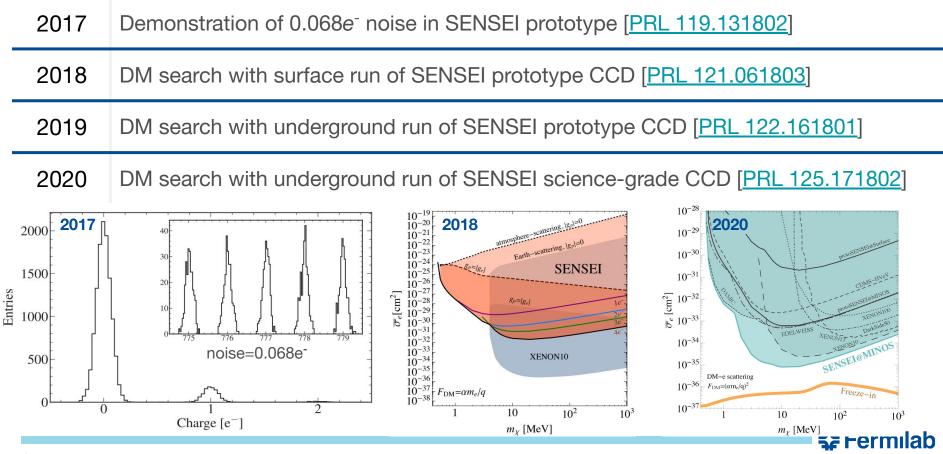
Fully funded by Heising-Simons Foundation + R&D support from Fermilab


The SENSEI* experiment

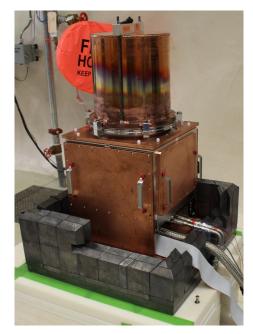
Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

Access to low-mass searches:


- Electron scattering of 1-1000 MeV DM
- Nuclear scattering of 1-1000 MeV DM via Migdal effect
- Absorption of 1-1000 eV DM
- Scattering of milli-charged particles
- Etc...

History of SENSEI results

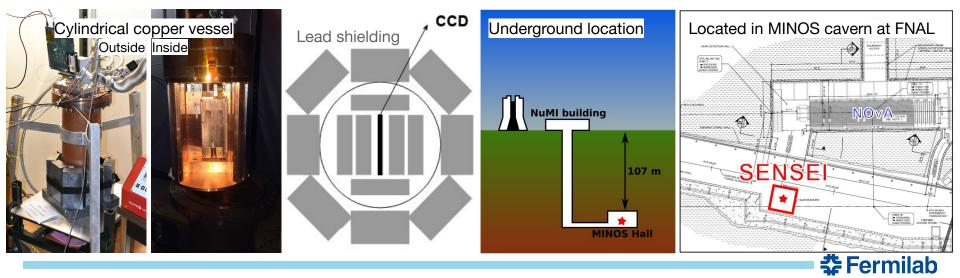

⊙⁄ensei

Current status: two science-capable SENSEI setups

SENSEI@MINOS

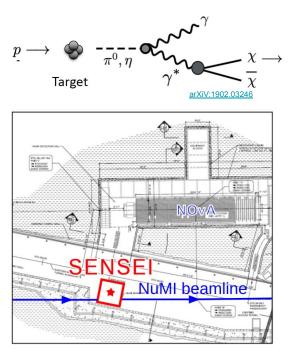
SENSEI@SNOLAB

Will show new results/data from both detectors today

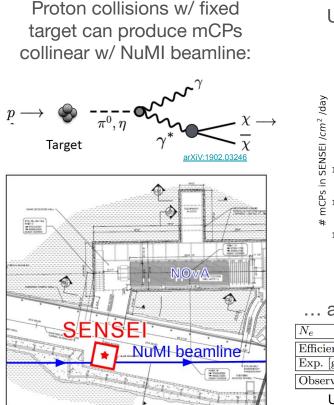

SENSEI@MINOS

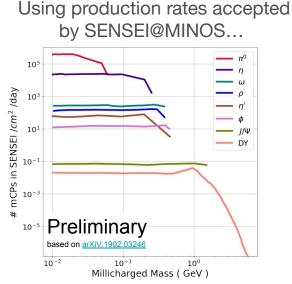
One CCD module installed in copper cryostat: ~1.925 g, operated at 135 K

Shielding: inner and outer layers of lead shielding, underground site at FNAL in MINOS cavern (~107 m)

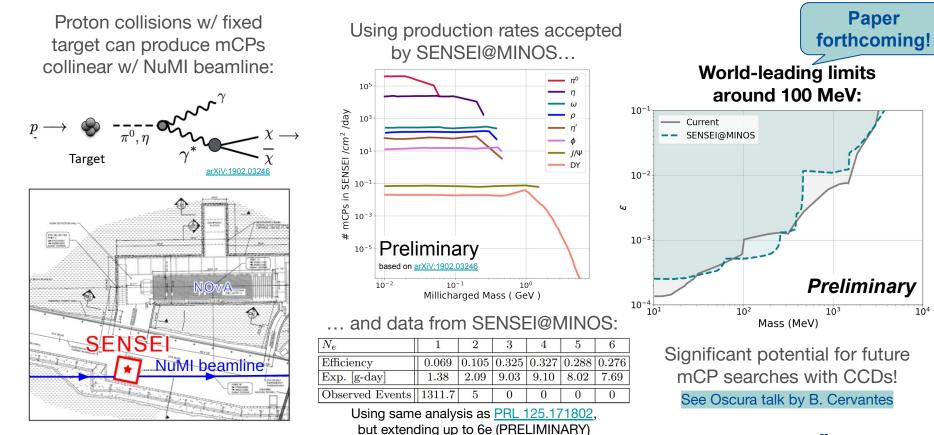

Intersects with NuMI beamline

Milli-charged particle (mCP) search in SENSEI@MINOS


Proton collisions w/ fixed target can produce mCPs collinear w/ NuMI beamline:



Milli-charged particle (mCP) search in SENSEI@MINOS


... and data from SENSEI@MINOS:

N_e	1	2	3	4	5	6
Efficiency	0.069	0.105	0.325	0.327	0.288	0.276
Exp. [g-day]	1.38	2.09	9.03	9.10	8.02	7.69
Observed Events	1311.7	5	0	0	0	0

Using same analysis as <u>PRL 125.171802</u>, but extending up to 6e (PRELIMINARY)

Milli-charged particle (mCP) search in SENSEI@MINOS

sei

9

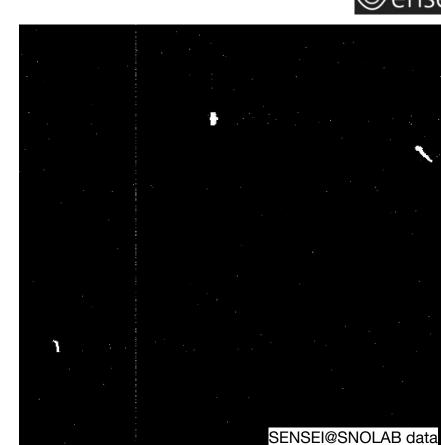
SENSEI@SNOLAB

CCDs installed in copper cryostat: 6 CCDs (~13 g) operating (out of eventual ~100g), 6144×1024 pixels, 15 µm pitch, 675 µm thick

Shielding: 3" of lead, 20" of polyethylene and water, 2 km of granite overburden

Installation: 4-7/2021, Commissioning: 10/2021-8/2022, Science: 9/2022-present

CCDs are operating well


20 hour exposures: 122 images and counting, no binning, ~50% blinded for bias mitigation

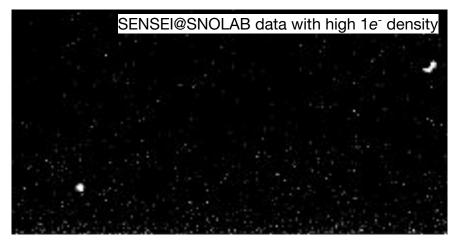
300 Skipper samples \rightarrow 7.3 hours readout, noise of ~0.14 e⁻

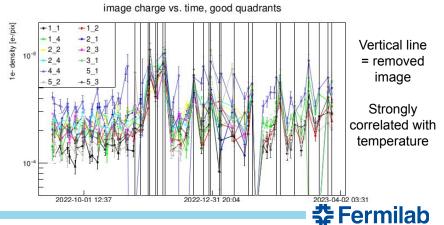
3 hour "clear" following each image to sweep charge from active area

Temperature variations of **135 K-155 K** due to failing cryocooler

- 1 e⁻ density (after cuts): ~2 x 10⁻⁴ e⁻/pixel
- No dark rate measurement performed

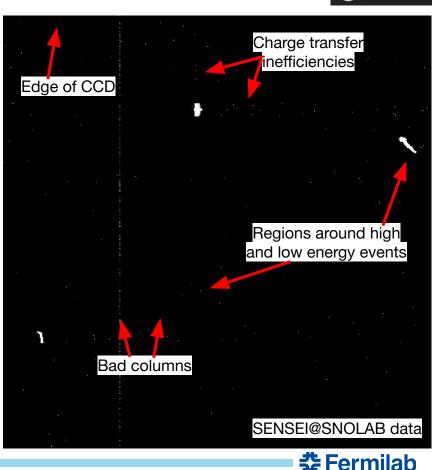
⊘⁄ensei


Data selection

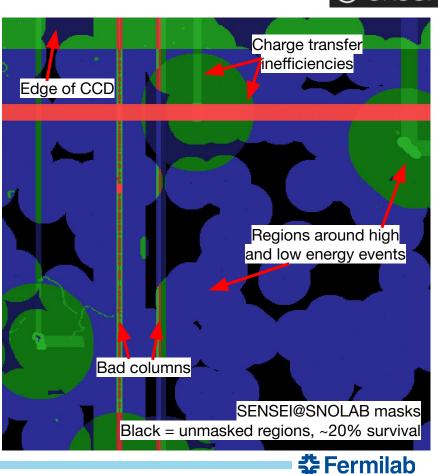

Remove quadrants of CCDs that exhibit unusual behavior:

- Consistently high 1 e⁻ density
- Low readout gain
- High electronic interference
- High charge transfer inefficiency

Remove images with unusually high 1 e⁻ density:


Flag quads with *p*-value < X, where X is such that we expect to reject < 0.5 quads, remove images with > 1 rejected quads

Cluster reconstruction + selection

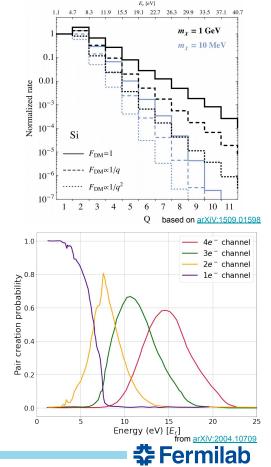

- 1. Cluster any contiguous pixels $\ge 1 e^{-1}$
- 2. Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies (CTI, size varies by charge)
 - Region surrounding any ≥1e⁻ pixels (size varies by charge)
- 3. Remove clusters with any pixels overlapping a mask
- 4. Remove individual high-background cluster shapes

Cluster reconstruction + selection

- 1. Cluster any contiguous pixels >1 e⁻
- 2. Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies (CTI, size varies by charge)
 - Region surrounding any ≥1e⁻ pixels (size varies by charge)
- 3. Remove clusters with any pixels overlapping a mask
- 4. Remove individual high-background cluster shapes

Dark matter-electron scattering limit setting

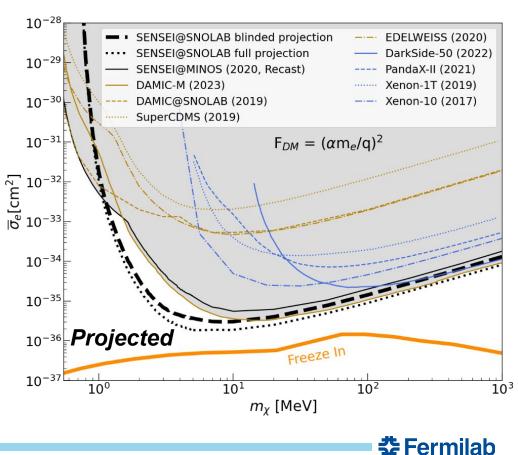
Signal model: generate expected DM events per electron channel using QEdark (upper right) and other calculations given astrophysical parameters from <u>PhystatDM</u> and ionization model (lower right)


Bin by shape: split each electron channel into bins based on number of pixels and/or shape of cluster

Exposure: determine effective exposure for each bin using Monte Carlo simulation given actual masks and charge diffusion parameters measured in SENSEI@MINOS

Backgrounds: calculate expected coincidence background in each bin given measured 1e⁻ density

Limit: Determine a combined likelihood over all bins to set 90% C.L. upper limits in cross section-DM mass parameter space


Projected dark matter-electron scattering limits

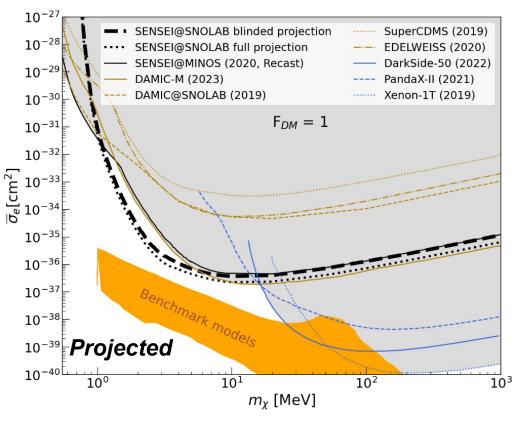
Data: 67 *unblinded* images (55 remain blinded), 2 -10 e⁻ channels

Exposure: amounts to ~35 g-days per electron channel with current masks

Two projected limits: unblinded rates ~scaled to blinded exposure, ~scaled to unblinded + blinded exposure

Full data will be released following unblinding

©∕ensei


Projected dark matter-electron scattering limits

Data: 67 *unblinded* images (55 remain blinded), 2 -10 e⁻ channels

Exposure: amounts to ~35 g-days per electron channel with current masks

Two projected limits: unblinded rates ~scaled to blinded exposure, ~scaled to unblinded + blinded exposure

Full data will be released following unblinding

Future plans

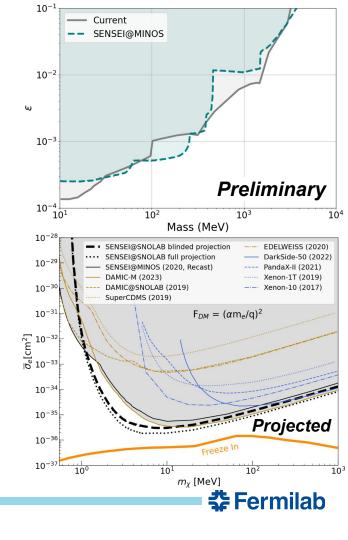
End of Science Run 1: April 2023

Planned hardware intervention to:

- Repair cryocooler
- Install additional CCDs
- Improve noise environment

Followed by start of Science Run 2

Results of Science Run 1 to appear soon


Pursuing additional measurements and analyses with both SNOLAB and MINOS data:

- 1 e⁻ studies
- Expanded energy range
- Alternate interactions, including Migdal, absorption, etc.
- Alternate signatures, including daily modulation

Conclusions

- The SENSEI collaboration has two detectors utilizing Si Skipper-CCDs to perform world-leading science:
 - SENSEI@MINOS has set new, world-leading limits on milli-charged particles around 100 MeV
 - SENSEI@SNOLAB is nearing the end of its first science run, and expects to probe new parameter space over a range of DM masses following upcoming unblinding
- Many more exciting results to come, paving the way for the next generation of CCD experiments

