Low Mass Axion Searches from ABRACADABRA Results to the DMRadio Program

UCLA Dark Matter in Los Angeles, CA April 1, 2023

Maria Simanovskaia on behalf of the DMRadio Collaboration Postdoc in the Irwin Group, Stanford University

Outline

- Axion parameter space
- Axion detection scheme
- ABRACADABRA-10 cm
- DMRadio program

Axion parameter space covers ~10¹⁰ mass range

- QCD axions solve the strong CP problem and are a leading dark matter candidate
- Wave-like dark matter: mass < 1 eV

Figure by A. Berlin and others 3

Axion parameter space covers ~10¹⁰ mass range

- QCD axions solve the strong CP problem and are a leading dark matter candidate
- Wave-like dark matter: mass < 1 eV
- Pre-inflationary axions: mass < 1 µeV

Figure by A. Berlin and others 4

Probing QCD axions through electromagnetism

- Axion field converts to an oscillating electromagnetic signal in the presence of a magnetic field (Primakoff effect)
- Enhance signal with a tunable resonator

Proposal: Sikivie (1983) v > 300 MHz Cavity-based searches (ADMX, HAYSTAC,...)

Proposal: Cabrera, Thomas (2010) v < 300 MHz Lumped element searches (DMRadio,...)

______ABRACADABRA⊳-10cm

A Broadband / Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

• Broadband lumped-element axion detector

- Broadband lumped-element axion detector
- Axions interact with 1 T peak field toroidal magnet to create an effective current

- Broadband lumped-element axion detector
- Axions interact with 1 T peak field toroidal magnet to create an effective current
- The axion effective current creates an oscillating magnetic flux that induces screening currents on a pickup structure

- Broadband lumped-element axion detector
- Axions interact with 1 T peak field toroidal magnet to create an effective current
- The axion effective current creates an oscillating magnetic flux that induces screening currents on a pickup structure
- Signal is read out from the pickup structure by a SQUID (Superconducting QUantum Interference Device)

△BRACADABRA⊳-10cm for axion detection

C. Salemi with the ABRA-10cm at MIT

PHYSICAL REVIEW LETTERS 122, 121802 (2019)

Discovery of $\sim 10^5$ axion-like-particles in the 1-10 neV range using the ABRACADABRA experiment

Jonathan L. Ouellet,¹ Chiara P. Salemi,¹ Joshua W. Foster,²

C. Salemi with the ABRA-10cm at MIT

<u>ABRACADABRA</u>⊳-10cm results

C. Salemi with the ABRA-10cm at MIT

- PRL **122** (2019): 131802.
- PRL 127 (2021): 081801.

DMRadio Collaboration

H.M. Cho, W. Craddock, D. Li, W. J. Wisniewski SLAC National Accelerator Laboratory - Location of DMRadio-m^3

J. Corbin, C. S. Dawson, P. W. Graham, K. D. Irwin, F. Kadribasic, S. Kuenstner, N. M. Rapidis, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. Wells Department of Physics Stanford University - Location of DMRadio-50L

A. Droster, A. Keller, A. F. Leder, K. van Bibber Department of Nuclear Engineering University of California Berkeley

DMRadio-pathfinder

S. Chaudhuri, R. Kolevatov Department of Physics Princeton University

L. Brouwer Accelerator Technology and Applied Physics Division Lawrence Berkeley National Lab

B. A. Young Department of Physics Santa Clara University

ABRACADABRA-10cm

J. W. Foster, J. T. Fry, J. L. Ouellet, K. M. W. Pappas, C. P. Salemi, L. Winslow Laboratory of Nuclear Science Massachusetts Institute of Technology

Berkeley

R. Henning Department of Physics University of North Carolina Chapel Hill Triangle Universities Nuclear Laboratory

Y. Kahn Department of Physics University of Illinois at Urbana-Champaign

A. Phipps California State University, East Bay

B. R. Safdi Department of Physics University of California Berkeley

Office of Science

DMRadio program overview

DMRadio-50L

- 5 kHz 5 MHz
- Quantum sensor testbed

DMRadio program overview

DMRadio program overview

DMRadio program schedule

DMRadio program schedule

DMRadio program schedule

DMRadio program status

DMRadio-Pathfinder, ABRACADABRA-10cm: in operation DMRadio-50L: under construction

DMRadio-m³: design complete in 2024

DMRadio-50L detection scheme

Toroidal magnet with field B_0 creates current J_{eff}

DMRadio-50L detection scheme

Toroidal magnet with field B₀ creates current J_{eff}

 J_{eff} creates magnetic field B_a

DMRadio-50L detection scheme

Toroidal magnet with field B₀ creates current J_{eff} J_{eff} creates magnetic field B_a

 B_a induces I_{ret} which is enhanced by an LC resonator and picked up by a sensor

DMRadio-50L: under construction at Stanford

Working on the dilution refrigerator in the lab.

DMRadio-50L cryosystem CAD model.

DMRadio-m3: design to be completed in 2024

Summary and conclusions

ABRACADABRA-10cm has excluded axions in 100 kHz - 2 MHz at $g_{a\gamma\gamma}$ < 3.2×10⁻¹¹ GeV⁻¹

DMRadio is a suite of lumped-element detectors for axions of masses < 1 µeV building on experience of ABRACADABRA and DMRadio-pathfinder

DMRadio-50L is an axion detector at 5 kHz - 5 MHz as well as an innovation platform for new amplifier technologies

DMRadio-m³ is an axion detector with DFSZ sensitivity at 30-200 MHz, the design will be completed in 2024 as part of DOE's Dark Matter New Initiatives

DMRadio-GUT is a next-generation experiment that will require technology developments and experience from DMRadio-m³ and DMRadio-50L

Thank you!

DMRadio posters at UCLA Dark Matter:

- "DMRadio-m3: An Overview" Nicholas Rapidis
- "Calibrating the DMRadio-50L Detector" Jessica Fry
- "DMRadio-50L Experiment Status and Overview" Alex Leder
- "Searching for High-Frequency Gravitational Waves with ABRACADABRA-10cm" Kaliroe Pappas

Signal flow and system overview

Low-mass axions < 1 µeV are well-motivated

Post-inflationary axions:

- Below 1 µeV, post-inflationary axions would over-produce
 "Classical axion window"
- Bounded to be > 1 μeV

P.W. Graham and A. Scherlis, Phys. Rev. D 98 (2018): 035017F. Takahashi, W. Yin, A. H. Guth, Phys. Rev. D 98 (2018): 015042

Low-mass axions < 1 µeV are well-motivated

Pre-inflationary axions:

 QCD axions < 1 µeV
QCD axions generated before inflation can naturally be produced in the observed abundance of dark matter over a large mass range (in green)

P.W. Graham and A. Scherlis, Phys. Rev. D 98 (2018): 035017.F. Takahashi, W. Yin, A. H. Guth, Phys. Rev. D 98 (2018): 015042.

ABRACADABRA-10cm

PRL **127**, 081801 (2021). PRL **122**, 131802 (2019).

Figure 4. The one-sided 95% upper limit (U.L.) on $g_{a\gamma\gamma}$ from this work excludes previously unexplored regions of ADM parameter space. The 1σ and 2σ containment regions are constructed by taking the appropriate percentiles of the distributions of the limits over narrow mass ranges; note that this means that ~16% of the upper limits lie at the bottom of the green band. While ~11.1 million mass points are analyzed, the data in the figure are smoothed for clarity. Before smoothing, the strongest limit obtained is $g_{a\gamma\gamma} \leq 3.2 \times 10^{-11} \text{ GeV}^{-1}$ at $m_a \sim 2.99 \text{ neV}$. Our limits surpass those from a number of indicated astrophysical and laboratory searches in this mass range (see text for details).

DMRadio-m3 coax design

DMRadio-m3 set of coaxes to cover frequency range

DMRadio - GUT

Parameter	Target Value	State of the Art
Magnetic field	16 T	~8 T (ADMX-G2)
Volume	10 m ³	~0.1 m ³ (ADMX-G2)
Quality Factor	2 x 10 ⁷	~10 ⁶ (Falferi, 1998; Ulmer,
		2016)
Temperature	10 mK	7 mK (commercial DRs)
Amplifier Noise	-20 dB of backaction noise reduction below SQL	Few times SQL (dc SQUIDs, JPAs)
Integration time	6.2 years	