

¹ Now at Los Alamos National Laboratory (LA-UR-23-23057) UCLA Dark Matter Conference – March 31, 2023

Outline

- DS-20k experimental design overview
 - Infrastructures
 - TPC and inner (neutron) veto design
- Underground argon (UAr) cryogenic system
 - Design and status overview

Other GADMC talks at UCLA-DM 2023

- Direct Detection with Argon C. Galbiati March 29 at 17:00
- Dark matter search in DEAP-3600: results and prospects M. Lai March 31 at 8:30
- From Photoelectrons to Bytes in DarkSide-20k A. Capra March 31 at 15:45
- The innovative Underground Argon Project: the path from procurement to purification for search of Dark Matter – F. Gabriele – March 31 at 18:00
- The NOA Facility @ LNGS R. Tartaglia April 1 at 8:00

Global Argon Dark Matter Collaboration (GADMC)

Collaboration meeting @ GSSI – L'Aquila, IT Nov. 16, 2022

DarkSide-

Glo

- ≈ 100 ins
- Exploitin multiple exposure

03/31/202

DARKSIDE

the state

ЛC

ArDM

2026

Canfranc

030 and beyond

4

Sensitivity

Exposure: 200 t-y

- 20 t fiducial volume with nominal 10 year run time
- 5 σ discovery: 2.1 x 10⁻⁴⁷ cm²
 @1 TeV/c²
- 90% C.L. exclusion: 6.3 x 10⁻⁴⁸ cm² @1 TeV/c²
- Sensitivity to neutrino induced coherent scattering (CEvNS):
 3.2 events

Instrumental Background

 0.1 background events over 200 t-y in the ROI (30-200 keV_{nr})

Electron Recoil Rejection

 Expect > 10⁸ discrimination using PSD with argon

03/31/2023

DARKSIDE

DS-20k Experimental Project Summary Timeline

DARKSIDE

DarkSide-20k in Hall-C at LNGS

DS-20k Cross Section Within Membrane Cryostat

Tom Thorpe – UCLA-DM

DARKSIDE

03/31/2023

Inner Detectors (TPC and Neutron Veto)

- DS-20k ⇔ Dual-phase argon TPC for DM search
- Fiducial volume ≈ 20 t
 underground argon
 (UAr), depleted in ³⁹Ar
- Active neutron veto integrated into the TPC structure via gadoliniumloaded (1% wt) PMMA (acrylic)
- "Reflector cage" covering inner TPC surface using TPB-coated ESR foils
- Sophisticated silicon photomultiplier (SiPM) based photo detection (total TPC area ≈ 21 m²)

03/31/2023

DARKSIDE

Neutron Veto

DARKSIDE

- Neutrons are moderated by the PMMA and capture on gadolinium
- γ -rays are emitted (totaling \approx 8 MeV) •
- UV photons from argon are wavelength shifted (PEN) in the veto region and detected by the veto photo detectors (VPDU)

DarkSide-20k Mockup @ LNGS

Gas pocket inlets

Anode plate

Wire grid

Cryostat used for UAr cryogenic system commissioning

- Mechanical mockup of DS-20k to be installed in Hall-C in 2023
- Tests of collaboration process flow, i.e. PMMA work in Canada
- Tests of detector design, i.e. cold cycling, gas pocket control, high voltage (HHV), Clevios coating, service connections
- Tests of drift field connections (see graphic below) ٠
- Will utilize UAr cryogenic system relocated to LNGS

DS-20k UAr Cryogenic System Concept

DARKSIDE

03/31/2023

Some considerations:

- 1. Argon purification using a hot getter requires gaseous phase
- 2. Radon removal from argon is near 100% efficient in gaseous phase
- **3. Gas pocket** is required for dual-phase TPC operation
- 4. Gaseous pumps are reliable and easy to maintain
 - 5. A **highly efficient system** consumes less liquid nitrogen at a given cooling power ⇔ exploits cooling power from the bulk
 - 6. During an emergency in an underground laboratory, electrical power may be interrupted and the **supply of liquid nitrogen** may become limited

Strategy:

Design a **safety-focused** system to circulate in **gaseous phase** while allowing heat exchange over the entire temperature gradient from room temperature down to liquid temperature, returning the clean liquid to the bulk.

DS-20k UAr Cryogenic System P&ID

DS-20k UAr Cryogenic System P&ID

Tom Thorpe – UCLA-DM

14

DS-20k UAr Cryogenic System P&ID

DS-20k UAr Cryogenic Testbed at CERN

- Core of DS-20k UAr cryogenic system tested
- Getter and radon trap are not installed here
- Performance tests conducted in 2022
- Measured
 cooling power
 recovery
 efficiency of
 >99%
- Verified **detector circulation** in gaseous phase

DARKSIDE

03/31/2023

DS-20k UAr Cryogenic Testbed at CERN

- Core of DS-20k
 UAr cryogenic
 system tested
- Getter and radon trap are not installed here
- Performance tests conducted in 2022
- Measured
 cooling power
 recovery
 efficiency of
 >99%
- Verified **detector circulation** in gaseous phase

03/31/2023

DARKSIDE

DS-20k UAr Cryogenic Testbed at CERN

N₂ flow controls cooling power; Cold gas return LN₂ supply coupled to vessel (Ar) pressure Core of DS-20k line Coldbox - condenser UAr cryogenic and gaseous phase system tested _₹ heat exchange 500 SLM DSGCP Getter and • (FT) (Fin radon trap are 1.5 bar Gaseous Ar N₂ control RVH1 #/___ not installed pump 1.5 bar RVC1 P1 FT C1N here Performance LN_2 phase LAr lines tests conducted 0.5 bar RVCA P2 P7 CA separator in 2022 Measured cooling power recovery VHDA2 VHDA3 🖵 0.5 bar efficiency of >99% Cooling Circulation DarkSide 20K PT RVC1 Verified **detector** Test circulation in Cryogenic System Control, monitoring, 04.13.22 gaseous phase -(F) LACRYOSTAT © HGW Photos and DAQ Cryostat

DARKSIDE

03/31/2023

DS-20k UAr Cryogenic System - Timeline

- Before 2018 Prototyping and conceptual testing at Hanguo Wang's UCLA lab.
- Fall 2018 Dedicated nitrogen supply system was built and space provided by CERN CryoLab.
- Summer 2019 Coldbox manufacturing.
- 2019 2021 System assembly.
- April 2021 Data taking operational.
- July, 2021 (TEST 1.5 weeks) Preliminary system functionality and liquefaction.
- Early 2022 System modifications/adjustments.
- April 2022 (TEST 3 weeks) Systematic testing. Full liquefaction; cooling power recovery efficiency and detector circulation tests.
- December 2022 Arrival at LNGS!

03/31/2023

DARKSIDE

Summary

- DarkSide-20k: dual-phase time projection chamber (TPC) for direct dark matter searches
- Low-radioactivity argon sourced from underground as target material
 - ≈ **20 t fiducial volume**; ≈ 50 t TPC active volume; ≈ 100 t total volume
- **Gd-loaded PMMA panels** will form the TPC mechanical structure (barrel)
 - PMMA (acrylic) = neutron moderator
 - Gadolinium (Gd) = neutron target material
- TPC design is in an advanced stage and assembly procedure is being finalized
- Mechanical mockup testing scheduled to take place at INFN-LNGS this year
- Silicon Photomultiplier based readout advanced to final production design
- Aria has shown first results of isotopic separation in argon
- Underground argon (UAr) cryogenic system has been successfully operated
- Start of operations in Hall-C at LNGS in 2026!

DarkSide-50 Underground Argon (UAr)

Industrial Scale Underground Argon (UAr)

Production – URANIA – Cortez, CO, US

- Industrial scale extraction plant
- Extraction rate: 250-330 kg/day
- Production capability ≈ 120 t over two years for DS-20k
- UAr purity: 99.99%

Purification – Aria – Sardinia, IT

Eur. Phys. J. C (2021) 81:359

- Seruci-0 (demonstrator) tested
- 350 m cryogenic distillation column
- O(1 tonne)/day capability
- Resulting UAr purity: 99.999%

DARKSID

UAr Condenser – Core of the System

Tom Thorpe – UCLA-DM

DARKSIDE

03/31/2023

Cooling Power Recovery Efficiency

- Obtain nitrogen and argon flows at different circulation pump speeds
- Plot nitrogen vs. argon flow for the different circulation pump speeds
- Obtain average consumption from slope of nitrogen vs. argon flow

Average consumption = 0.0169 slpm N₂ / slpm Ar

03/31/2023

DARKSIDE

Cooling Power Recovery Efficiency

N₂ flow (slpm)

- Obtain **nitrogen and argon flows** at different circulation pump speeds
- Plot nitrogen vs. argon flow for the different circulation pump speeds
- Obtain average consumption from slope of nitrogen vs. argon flow
- 0% efficiency ⇔ Liquefying argon from 300 K w/ only N₂ latent heat
 - $m(L+c\Delta T)_{Ar} = (mL)_{N2}$

DARKSIDE

03/31/2023

- 100% efficiency <> Zero N₂ consumption (zero slope)
- Determine our measured consumption as an efficiency (%)
- Measure > 99.1% cooling power recovery efficiency

Cooling Power Recovery Efficiency

What does this mean?

Cooling and condensing argon requires **only 0.9% of the cooling power** compared to using the latent heat from N₂ alone.

 \Rightarrow

Argon circulation (essentially) comes for free.

03/31/2023

DARKSIDE

DS-20k Piping and Instrumentation Diagram

- Place heat exchangers for detector circulation and ٠ emptying in atmospheric argon (AAr) bulk
- Experimental tests determine exact shape and size •

UAr

AAr

Argon Circulation Test

Argon Circulation Test

- One side of heat exchanger (inside cryostat) is filled with liquid from the bulk
 - Liquid/gas mixture from circulation pump is routed through other side of heat exchanger
 - Pressure difference turns liquid/gas mixture into liquid
 - Heat is produced, **boiling liquid** from the bulk

Argon Circulation Test Results

