

SubGeV Dark Matter searches with EDELWEISS and CRYOSEL

- EDELWEISS program for sub-GeV DM search with cryogenic Ge

- Recent results with athermal phonons using NbSi TES: PRD 106, 062004 (2022) Migdal search arXiv:2303.0267 Heat-only background

> J. Gascon Lyon 1, CNRS/IN2P3/IP2I on behalf of the EDELWEISS collaboration

EDELWEISS SubGeV

March 31st, 2023

Edelweiss Sub-GeV program

New mass domain, new interactions...

R. Essig + F. Reindl 's talks

Current and future expts limited by bkgs:

→ improved threshold not sufficient, also require discrimination

- Electron/Nuclear recoils/"heat-only"
- Surface/Bulk
- Challenge: transposing rejection performance of EDELWEISS-III 860 g heat-and-ionization
 Ge detectors from keV to eV scales!
 - Ex: few ~10⁻⁴³ cm² @ ~1 GeV with ~kg-size array requires improving $\sigma_{phonon} \times 50$ and $\sigma_{ion} \times 10$

Targets: $\sigma_{phonon} \sim 10 \text{ eV}$ and $\sigma_{ion} \sim 20 \text{ eV}_{ee}$

- Common R&D with RICOCHET (CENNS @ ILL)
- Reduction of mass + sensor optimization:
 EDELWEISS-SURF 17.7 eV [PRD 99, 082013 (2019)]
- Keep ability to apply HV for phonon signal NTL amplification & sub-e⁻ resolution.[PRL 125, 141301 (2020)]
 Milestone: RED30 electron-DM + DP results

See P. Cushman's talk

EDELWEISS SubGeV two complementary modes

LV

→ Use ionization to discriminate Electron Recoils, Nuclear Recoils and Heat-Only populations

ΗV

→ Use Neganov-Trofimov-Luke amplification of phonon resolution to resolve single electron-hole pairs

... But ionization can't be used for discrimination at low E

LV: RICOCHET low-voltage detectors

Joint R&D with RICOCHET: HEMT ionization readout High Electron Mobility

Transistor, operated at ~1K Low-C detector & cabling [arXiv:2111.10308, JLTP 199, 798 (2020)]

New result:

3x 40g Ge RICOCHET detectors with σ_{ion} in **30 eV**_{ee} range

> → x7 to x11 better than EDELWEISS-III

→ Excellent prospects for HO rejection at low energy in DM searches

J. Billard, Magnificent CENNS 2023

March 31st, 2023

HV: NTL-amplified Ge detectors

[JLTP 209, 263 (2022)]

→ Main limitation is not resolution, but Heat-Only background

Must be controlled to benefit from improvements in resolution & HV *Is bkg related to NTD readout?*

RED30: 33 g Ge + NTD

[PRL 125, 141301 (2020)]

σ = 0.53 e- @78V in Ge @LSM

Toward single e⁻-hole pair sensitivity in Ge

Competitive DM-electron + Dark Photon limits

Different kinds of phonons

Primary phonons

Short mean free path

In general, do not reach sensor

Phonon sensor

Ballistic phonons From decay of primary phonons

Long mean free path

Detectable in TES sensor

If **E** field applied

Phonon sensor

Additional NTL phonons "Primary" + Ballistic production along field lines

Primaries at end of field lines detectable in TES sensor

Phonon sensor

Thermal phonons From decay of ballistic phonons

Detected by Ge-NTD thermistance

HO signal difference between TES and NTD?

NbSi TES athermal phonon sensor

PRD 106, 062004 (2022)

- 200 g Ge detector @ LSM
- TES = 20 mm wide NbSi spiral (single 10 μ m line, 10 nm thick, split in two sensors) with T_c = 44 mK
- σ = 4.5 eV_{ee} @ 66V

- Some HO reduction wrt NTD: X 100 improvement wrt previous EDW Migdal limits
- ... But HO background is still the main limitation!

HO nature of background derived from absence of NTL amplification between 15V → 66V

HO with high-energy NTL phonons

New arXiv:2303.02067

- Previous results obtained from annular region, where field lines do not intersect the NbSi film
- Signal from center region shows sign of sensitivity to primary NTL phonons : prompt signal excess
 - in only one of the two 1/2 of the film
 - faster risetime
 - amplitude scales with applied bias

 Interpretation confirmed using localization provided by signal on top & bottom electrodes

Position-dependent phonon signal

Tag non-ballistic NTL phonons using inner/outer film asymmetry

- Reduced efficiency to 4.6% of 200 g
- Eliminates events from outer edge of detector (as seen on tail of mis-collected charge events of ⁷¹Ge K and L lines)

Tag of ionizing events!

• Migdal limits improved by x2.8 at 1 GeV

Significant reduction of HO bkg

- factor >5 @ 90%C.L. (statistics limited)
- phonon resolution limit tag to $>150 \text{ keV}_{ee}$

Wishlist for use as DM detector:

- Improve energy resolution (go back to NTD to get RED30 sub-e resolution?)
- Increase volume where NTL-boosted events can be detected, i.e field lines end on NbSi film
- But reduce efficiency to HO events randomly distributed in volume (or surface)

10

Phonon Energy (keV)

EDELWEISS

1

Heat-Only selection

March 31st, 2023

→ CRYOSEL design

10-2

 10^{-3}

100

CRYOSEL concept

- 40 g Ge crystal
- Phonon sensor = single NbSi strip (10 μm wide) forming a 5 mm-wide circle
- Use this small film as Point-Contact-like electrode of HV detector
- NTD glued on large enveloping electrode (high-resolution NTLamplified heat measurement)
- NbSi operated as SSED (Superconducting Single-Electron Detector)
- Detector kept well below T_c so that SSED is only triggered by large bursts of primary NTL phonons from high-field region just in front of it
- Most HO will not trigger SSED

CRYOSEL first pulses and plans

- NTL Pulses observed on SSED with Tc=46 mK on a 40g Ge with a NTD at 16 mK
- SSED pulses disappear at 0 V, as expected
- Rather sharp K and L ⁷¹Ge lines observed on NTD despite very inhomogeneous field

EDELWEISS transitioning successfully in a new SubGeV program with cryogenic Ge detectors

- Objective: ~1kg array in new cryostat @LSM (collab. with TESSERACT?):
 - Sub-GeV DM interaction producing nuclear recoils, with *event-by-event identification* with RICOCHET-like detectors
 - Exploit NTL boost to explore MeV Dark Matter interaction with electrons and eV Dark Photon

Order of magnitude improvements of performance achieved so far, with significant new search results:

- Ionization: $\sigma \sim 30 \text{ eV}_{ee}$ in 40 g Ge synergy with RICOCHET
- Phonon: $\sigma = 17.8$ eV in 33 g Ge
- HV : σ = 0.53 e- @78V in 33 g Ge
- HO reduction observed using athermal phonons with 200g NbSi

+ Development of charge-tag with SSED (CRYOSEL in BINGO @ LSM)