Astrophysical Constraints on Warm Dark Matter

UCLA Dark Matter 2023

Kev Abazajian University of California, Irvine

March 30, 2023

How much small scale structure is there?

How much small scale structure is there?

Dwarf galaxies around the Milky Way are less dense than they should be if they held cold dark matter

Measuring Large Scale Structure P(k)

Is there evidence for a small-scale cutoff, and *how warm is too warm?*

Is there evidence for a small-scale cutoff, and

Abazajian astro-ph/0511630

Abazajian astro-ph/0511630

Canonical "Cold" Dark Matter...

Canonical "Cold" Dark Matter...

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

It is realized by giving a "push" to a grid of particles with that statistical distribution...

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

It is realized by giving a "push" to a grid of particles with that statistical distribution...

				1000		ALC: NO	-	-	-	-		-				-				-	
-			2			•••	• •	•22			•••					•	•		. •		•
2		2255 2	•••		•		•	• 5	Z	•											
24422233 22	2432332	3•2 •				•	• •		33 .	••	•										
••2•3233442	2 423		• •			•		• •	33.							•					٠
						· ·			61												
																				1.1	
	•••										· · ·		-					1 A A			
	•		• •		•	•		•••	•••			•••		• •		•					
		• •	•	•	•				•••	•Z •	•										
	•			• . •				•••		•2•										1.1.1	•
	• •															•					
	• •		•			1.00					÷										
		•	•	. •		••				•••			•					•			
	•			•	• •		••	••	•••	•••	• 2	•				•	•				
• • •	•	•		• •	•	• •					. 2		•						•		
				•	• •	1.00			••		•	2 •				•	•	•			
												. 2	•							•	
																		1.00			•
				-			-						2 -								
											-		÷.,	-							
	•••																				
• •				•	•	• •		••••	•••				•••	•2••				• •			۰.
No. of Concession, Name			•		•		••					•••				ζ.	2.				
• •									• •					. 2.	22 .	2•••	• •				۰.
															22		• •				•
			•••																		•
																	· •				
	•				•		•														
• •		•		••					••••		•••	• •					•				
							••••			•••	• •	••		•••	••	••					
								232 •	332									•6•			•
								7 0 .	3.41	455.	22						23	563•			
			•			-933	2000	1-27		100	5000							412		•	
	• •			• •		233	C • •	• 4			DECCE	£	0.0				2.5	775			
					•22	3•		•	. •			7.00	2.2					- 53	5 ·		
			• •		232	•••								-			2.2.5	1.1			
		•		7	52 .		• •								czzą		3 8 2	6.2			
			••	33		•									• 3	*55	552 3	222	14		1
				322											• 3		24	223	-4		
															2 .			224	24	• 2	
															2			23	6 22	2.	
•	• •		1040											. 2					45		
			42 .												-						
			2 .											-							
					•	•			•		•••					•					
		- line											2								
		400																			
2 . 2 . 3 .	2 2 422		•																		
• 2 2 3	5 5 322	2.											2								
			••									-	5								
		• 2•											-								
					•								1								
		2.										- 32									
												••2						•		•	
		• ••••										•2		•							
	•••	•2										.2.									
										1											
			2		• •							-3 -									
			20									20									
			•2 • •						•			2		•••							
			2									23 .									
												3									
• •	•••		-									14									
			2.0									14.									
			** 2								3										
					• •		•														
											- 4	ið •								-	
				.2 .								4									
	•						-	-													

This is a description of the statistical distribution of the density fluctuations in the *linear regime*...

It is realized by giving a "push" to a grid of particles with that statistical distribution...

...and then gravity is allowed to do its duty.

Suppression of small scale power ⇒ Suppression of Small Halos

Sterile WDM

Sterile WDM vs. Thermal WDM

Sterile WDM vs. Thermal WDM

Varied Momenta Distributions for Different Production Mechanisms

Lyman- α forest: $m_{th} > 3 \text{ keV (WDM)}$ (95% CL) $m_{s,DW} > 16 \text{ keV}$ (Baur et al. 2015)

Lyman- α forest: $m_{th} > 3 \text{ keV (WDM)}$ (95% CL) $m_{s,DW} > 16 \text{ keV}$ (Baur et al. 2015) Milky Way galaxy counts: *m_{th}* > 3 keV (WDM) (Horiuchi+ 2013, Cherry & Horiuchi 2017, Nadler+ 2019)

Lyman-a forest: $m_{th} > 3 \text{ keV (WDM)}$ (95% CL) $m_{th} > 3 \text{ keV (WDM)}$ $m_{s.DW} > 16 \text{ keV}$ (Baur et al. 2015)

Milky Way galaxy counts: (Horiuchi+ 2013, Cherry & Horiuchi 2017, Nadler+ 2019)

 $\lambda_{FS} < 42 \text{ kpc}$ $M_{FS} < 3 \times 10^6 \text{ M}_{\odot}$ (Abazajian & Koushiappas 2006)

Lensing Constraints on WDM

Lensing substructure constraints push: $m_{th} > 5.3 \text{ keV} (m_{s,DW} > 41 \text{ keV})$ (Gilman+ 2019)

JWST Cycle ONE Proposal 2022 (PI Nierenberg): *m*_{th} > 10 keV

Lensing substructure constraint: $m_{th} > 5.3 \text{ keV}$ (Gilman+ 2019)

JWST Cycle ONE Proposal 2022 (PI Nierenberg): *m*_{th} > 10 keV

Lensing substructure constraint: *m*_{th} > **5.3 keV** (Gilman+ 2019) Studied in a wide range of sterile neutrino DM models (Zelko+ '22) *JWST Cycle ONE Proposal* 2022 (PI Nierenberg): *m*_{th} > **10 keV**

	Strong	Strong Lensing &	Lyman_o	Lyman- α &
	Lensing	Galaxy Counts	Lyman-a	Thermo.
	$[\mathrm{keV}]$	$[\mathrm{keV}]$	$[\mathrm{keV}]$	$[\mathrm{keV}]$
PK	I: 10	I: 26	60	12
	II: 9.6	II: 24	0.9	
KTY	I: 2.1	I: 5.2	1 2	2.4
	II: 1.9	II: 4.8	1.0	
$ u \mathrm{MSM}$	7.0	16	I: 5.0	I: 9.0
			II: 5.0	II: 10
DW	I: 34	I: 92	21	40
	II: 31	II: 84		
thermal	4.6	9.7	3.3	5.3
		(Zelko	et al PRI	arXiv.2205.09

Warm dark matter

(So Bory - yesteriag)

- GD-1+Pal 5:
 - m_{WDM} > 4.6 keV
- Including classical satellites:
 - m_{WDM} > 6.3 keV
- +lensing+other MW dwarfs:

たちらく

- m_{WDM} > 11 keV
- (all 95% confidence)

Banik, Bovy, et al. (2021b)

Sterile Neutrino Dark Matter: Shi-Fuller Mechanism Excluded

Abazajian+ arXiv:2203.07377

Pushing beyond *m*_{th} > 10 keV: Accurate Calculations of Standard *Thermal* WDM

Thermal WDM abundance set by degrees of freedom of the plasma...

	Spin-1/2		Spin-3/2	
$m \; [\rm keV]$	$g_*(T_D)$	$\left T_X / T_\gamma \right $	$g_*(T_D)$	$\left T_X / T_\gamma \right $
2	1917	0.1268	3833	0.1007
5	4792	0.09344	9583	0.07416
10	9583	0.07416	19170	0.05886
20	19170	0.05886	38330	0.04672

Vogel & Abazajian 2210.10753

Pushing beyond *m*_{th} > 10 keV: Accurate Calculations of Standard *Thermal* WDM

Given exact temperature via dilution, and training on 1 keV < m_{th} < 100 keV, we corrected the particle mass inferred from a given cutoff scale by 20% to 40% from previous WDM fits (e.g. Viel et al. 2005) Vogel & Abazajian 2210.10753 Sterile Neutrino kinematic searches in nuclear β-decay: KATRIN/TRISTAN, HUNTER, MAGNETO-v

HUNTER

Visible Sterile v in the Low-Reheat Universe: Cosmological Constraints & Laboratory Constraints

Visible Sterile v in the Low-Reheat Universe: Cosmological Signals & Laboratory Constraints

Visible Sterile v in the Low-Reheat Universe: Cosmological Signals & Laboratory Constraints

Visible Sterile v in the Low-Reheat Universe: Cosmological Signals & Laboratory Constraints

• Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)
- For sterile neutrinos, pure counts of future X-ray missions will do well:

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)
- For sterile neutrinos, pure counts of future X-ray missions will do well:
 - 2023: eROSITA

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)
- For sterile neutrinos, pure counts of future X-ray missions will do well:
 - 2023: eROSITA
 - 2023: XRISM

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)
- For sterile neutrinos, pure counts of future X-ray missions will do well:
 - 2023: eROSITA
 - 2023: XRISM
 - 2027: *eXTP*

- Structure formation constraints (dwarf counts, lensing substructure) in our lensing + galaxy counts work place the strongest limits yet on warmness of dark matter, with benchmark values $m_{\text{thermal}} > 9.7$ keV and $m_{\text{DW}} > 92$ keV (Zelko et al. 2022)
- Adding X-ray Limits now excludes all oscillation-based production mechanisms for sterile neutrino dark matter as all of the dark matter (Shi-Fuller & Dodelson-Widrow)
- JWST Cycle 1 Proposal to push to $m_{\text{thermal}} > 10 \text{ keV}$ from lensing
- New transfer functions should be used for > 10 keV regime for < 20% accuracy in particle mass constraints (Vogel & Abazajian 2022)
- Mixed C+WDM sterile dark matter models are relatively unconstrained
- Colder, non-oscillation based production have much more freedom, as do cosmological scenarios with low reheating temperature (Garcia Escudero et al. 2023)
- For sterile neutrinos, pure counts of future X-ray missions will do well:
 - 2023: eROSITA
 - 2023: XRISM
 - 2027: *eXTP*
 - 2030+: *NewATHENA*, AXIS, ...