

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Search for keV-scale sterile neutrinos with KATRIN/TRISTAN

HALBLEITERLABOR

DER MAX-PLANCK-GESELLSCHAFT

Andrew Gavin, on behalf of the KATRIN Collaboration

UCLA Dark Matter 2023

March 30th, 2023

< DEGLI STUD

POLITECNICO

DIPARTIMENTO DI ELETTRONICA

MILANO 1863

Right-handed neutrinos are 'natural' ٠ extensions to the standard model

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \\ |\nu_s\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \cdot \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \\ |\nu_4\rangle \end{pmatrix}$$

Mixing with active neutrino branch small but • offers experimental signatures

 $'_4$

THE UNIVERSITY

of NORTH CAROLINA at CHAPEL HILL

keV Sterile Neutrinos with KATRIN

14

16

10

12

TRISTAN Project Development

٠

Detector Characterization

Overview

- Characterization at MPP/TUM/Polimi ⁵⁵Fe, ²³¹Am, electron gun, pulsed laser, etc. • Tests of detector performance,
 - radiation damage, and DAQ readout

Laser/Light Tests

- Fine spatial resolution probing of detector response
- Investigation of charge sharing on boundaries
 C. Forstner

TRISTAN Detector Geometry

TRISTAN Module

TRISTAN Module Testing

TRISTAN Integration

Ongoing detector development tasks:

- Testing of new production of SDD wafers from HLL
- Production of additional 166-pixel modules
- Module mounting and vacuum design
- Testing of 9 modules at KATRIN Focal Plane Detector replica test setup
- Production and commissioning of remote-ADC data acquisition system

TRISTAN Project Development

TRISTAN Systematics

TRISTAN Sensitivity Projections

Spectrum and systematic covariance matrices simulated through **TRmodel** (dev: M. Descher) framework

- Grid scan performed over m_s and $\sin^2 \theta$, with χ^2 calculated at each point
- Optimization of individual experimental parameters

TRISTAN Sensitivity

- Systematic effects decrease sensitivity over the mass range by (approximately) an order of magnitude
- Different experimental design considerations alter the breakdown of systematic contributions

TRISTAN Sensitivity

Statistics

- Data taking for under a week necessary to probe 10^{-5} mixing
- 1 year measurement campaign to reach $2 \cdot 10^{-7}$

Systematics

- Majority of major systematic effects implemented in TRmodel
- Approximately order of magnitude decrease in sensitivity
- Ongoing investigations

Effect	Status
T-decays on the RW	In progress
Shape uncertainties of RW backscattering spectrum	
Plasma	Not started
Magnetic trapping in the WGTS	In progress
Uncertainties of cross-section and energy loss function	Not started
Detector backscattering + backreflection	In progress
FSD uncertainty and energy dependence	Collaboration with Saenz started
Theoretical uncertainties	Considered in publication, has to
	be reevaluated (arXiv:1409.0920)
DAQ: non linearity - cross-talk	In progress

TRISTAN Summary

Detector Development

- Production of 166-pixel detector modules meeting design requirements
- Continued characterization
- Development of final infrastructure needed for integration as the KATRIN detector

Sensitivity

- Ongoing effort to accurately model tritium spectrum for sensitivity and data fitting
- 1 year measurement campaign to reach $2 \cdot 10^{-7}$ statistical sensitivity

Installation

 Scheduled for installation in the KATRIN beamline following the end of the neutrino mass measurement (2025+)

<image>

TRISTAN Workshop, Summer 2022

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-FG02-97ER41041, DE-FG02-97ER41033

This material is based upon work supported by the National Science Foundation under Grant No. NSF OISE 1743790

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 852845)

Differential vs Integral

