
Direct DM detection attempts to measure the energy deposited within a detector by 
collisions of DM particles from the dark halo of our Galaxy passing through the 
detector. 

DM-Nuclei scattering detectors (��ℎ���~keV) are used to detect DM heavier than 1 
GeV (WIMP), whereas DM-electron scattering detectors  (��ℎ���~eV) are used to 
detect sub-GeV DM (Light DM, or LDM).

The differential rate for target nuclide T, 

 

Example: DM-Nuclei Spin Independent interaction, 

Halo Dependent (HD) Analysis: Assume a local dark halo model, i.e.,  �(�min). 
Plots are made in (�, ����) parameter space.

Halo Independent (HI) Analysis: The halo model is not assumed but is to be 
found using the observed rate. All the dependence on the halo is in �(�min), common 
to all experiments, . Plots are made in the (�min,   �) plane. 
(Fox, Liu and Weiner, PRD 83, 103514 (2011), [1011.1915])

Complications: experiments do not directly observe the recoil energy; instead, they 
observe a proxy �′ for �� with �′ dependent energy resolutions/efficiencies. 

The observed rate is 

�(�′): counting efficiency; ��(��, �′): energy resolution. 

Formulation for general nuclear form factor, interaction type and energy resolution 
(Gelmini and Gondolo, JCAP 12 (2012) 015, [1202.6359])

             :  DM, particle model, and detector dependent response function.
It acts as a “window function” in �min. We can get information about �(�min), only for 
the �min range in which it is significantly different from 0.

Convex geometry tells us that for � data points,

� can be parameterized by �� and �(��).

Due to their kinematic difference, the DM-Nuclei scattering cross section only 
depends on �, but DM-electron scattering depends on both � (DM velocity) and � 
(momentum transfer).

DM-Nucleus scattering: the target nuclei are free, the recoil energy �� = �2/2��. 
DM-electron scattering: the target electrons are bounded and have an unknown initial 
momentum, the electron energy �� = � ⋅ � − �2/2��. �� = �� + binding energy.

DM-electron scattering rate:

DM form factor: ���(�)=1 or ���(�) = 1/�2;
electron form factor:  ��,�(�, ��), overlap of the initial and final electron wavefunctions.

Change of variable, from (�,  ��) to (�min,  ��) (two branches, �±(�min,  ��) ), the 
response function
 

In free atoms, electrons are excited from an orbital to a free state, �� = �� + ����.
Differential rate: (Essig et al, JHEP 05 (2016) 046, [1509.01598]. )

Response function:

In Semiconductors, electrons are excited from the valence band to the conduction 
band, �� = ��.
Differential rate:

Response function:

The calculation for semiconductors can be further improved by including the in-
medium effect. The differential rate becomes 
(Knapen, Kozaczuk, and Lin, PRD 104, 015031 (2021), 2101.08275])

Where ϵ(�, �) is the dielectric function that contains all information about the material.

Response function

An example is shown in Fig. 3. The amplitude change due to the in-medium effect 
(screening) is significant, so this effect should always be included.

Fig. 1: Response function for Xe
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Comparing window functions shown in Fig. 1 and Fig. 2,

•  Reponse function is significantly larger in some ranges of 
�min, indicating the size of the “window.”

• Semiconductor detectors have lower energy threshold 
than liquid gas detectors.

Results
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Fig. 2: Response function for Ge Fig. 3: Response function calculated with 
different methods


