COSINUS Progressing towards shedding light on the DAMA/LIBRA claim

UCLA

Dark Matter 2023 March, 29 – April, 1 Los Angeles, USA

Karoline Schäffner

MPP, Munich, Germany kschaeff@mpp.mpg.de

MAX-PLANCK-INSTITUT FÜR PHYSIK

@Maurizio Verdecchia Photography

COSINUS: future cryogenic Nal DM search

~30 scientists, engineers, and technicians are building a **low-background cryogenic dark matter observatory** based on a **sodium iodide (Nal)** target

G

S

Scuola Universitaria Superiore

MAX PLANCK INSTITUTE FOR PHYSICS | K. SCHAEFFNER

COSINUS experimental site

- Laboratori Nazionali del Gran Sasso (LNGS), Italy
- COSINUS is located in hall B
- full approval in 2021

COSINUS experimental facility

Shielding design based on MC simulations: EPJ C 82, 2022

WHY WE NEED A WATER TANK?

• good moderator for neutrons

 veto of (cosmogenic) muons via Cherenkov light emitted in water → instrumentation of water tank with 28 PMTs

EPJ C 82, 2022

PMTs

VIBRATION MITIGATION: 3 LEVELS

infrastructure on blue frame → most "noisy"

pulse tube unit on yellow frame → medium

cryostat "rests" in drywell → most quiet

UltraQuiet Technology

all parts of cryostat are centered

190 kg copper shield below the mixing chamber

rotary valve of the pulse tube cooler on separate frame

sandbox

installation @ LNGS: 11/2021 – ongoing

Water tank, platform equipped with clean room and control building finished !

 \rightarrow this week: installation start of electrical infrastructure

COSINUS SEARCH STRATEGY

Model- and target independent test of DAMA

- -> novel and unique: sodium iodide target as low-temperature calorimeter
 - HEAT CHANNEL: precise energy information
 - + low threshold for nuclear recoils

COSINUS SEARCH STRATEGY

Model- and target independent test of DAMA

- → novel and unique: sodium iodide target as low-temperature calorimeter
 - HEAT CHANNEL: precise energy information
 - + low threshold for nuclear recoils
 - LIGHT CHANNEL: particle identification on event-by-event basis

COSINUS SEARCH STRATEGY

Model- and target independent test of DAMA

-> novel and unique: sodium iodide target as low-temperature calorimeter

- HEAT CHANNEL: precise energy information
 - + low threshold for nuclear recoils
- LIGHT CHANNEL: particle identification on event-by-event basis

 \rightarrow Signal-only measurement of potential DM signal

LOW-TEMPERATURE CALORIMETER

LOW-TEMPERATURE CALORIMETER

... Nal is not that Nalce !

hygroscopic nature

handle only in controlled atmosphere

⁴⁰K in the Nal crystal

Nal grown in collaboration with

5-9 ppb of K at crystals' nose and 22-35 ppb at crystals' tail

(3-inch crystal, Astrograde powder from Merck)

Zhu, Y. et al, IEEE, 2018

low Debye temperature

NIM A 1045, 167532

adapted thermometer \rightarrow remotes + avoid other phonon-loss channels

remotes Design

NIM A 1045 2023 167532

 separate wafer hosts the thermometer

(TES = transition edge sensor)

- gold pad glued / evaporated onto Nal crystal phonons propagate in Nal and couple to the electron system of the Au pad
- gold bond wire connection to the temperature sensor

 \rightarrow \rightarrow absorber excluded from fabrication process

remotes Design

Matt Pyle et. al, 2015 arXiv:1503.01200

NIM A 1045 2023 167532 \rightarrow proof of principle: Si and TeO₂ as targets

remoTES readout opens field of cryogenic detectors for delicate, non-standard target materials for **dark matter** and **neutrino physics**

RESULTS FROM Nal-remotes – June 2022

- Nal (undoped) grown by SICCAS
- dimensions: 10x10x10mm³; about 4 g
- Au-foil glued with epoxy
- Au-pad size: 4 mm²
- TES wafer (Al₂O₃) with W-TES

- silicon light absorber of beaker-shape
- dimensions: 40 mm diameter and height, 1 mm thick
- mass: 15.1 g
- W-TES directly evaporated onto the Si beaker
- TES optimized for light detection

BACKGROUND DATA

Measurement carried out at the test facility of CRESST @ LNGS

- 58.07 hours of data
- $\sigma_{Nal} = 0.441 + -0.11 \text{ keV} \rightarrow E_{thr} < 2 \text{ keV}$
- $\sigma_{LD} = 0.988 + 0.052 eV_{ee}$
- $\sigma_{\text{LD-direct}} = 23.87 + -0.55 \text{ eV}$
- light output Nal: ~ 2.5%
- energy calibration with ⁵⁵Fe & ⁵⁷Co

MAX PLANCK INSTITUTE FOR PHYSICS | K. SCHAEFFNER

NEUTRON DATA

- AmBe neutron source
- 26.0 hours of data

events due to inelastic scattering

Quenching factors 10 keV: Na = 0.2 QFI = 0.03 50 keV: Na = 0.25 QFI = 0.09

proof of particle identification in a Nal-based detector

OUTLOOK

- hexagonal crystal (65 g / 110 g)
- lid to host crystal •

Si-beaker for 4π active • surrounding of the crystal

- 8 detector modules per level •
- 3 levels in final stage

PHYSICS REACH

F. Kahlhöfer, KS et al., JCAP 1805 (2018) no.05, 074

Warning: Not updated for DAMA result with 1keVee !!

CONCLUSION

Dark matter is a fundamental question of present-day physics and COSINUS can confirm or reject the DAMA/LIBRA claim

COSINUS developed the first Nal dark matter detector with particle discrimination and offers better sensitivity at smaller target mass (~1kg for COSINUS vs. 250 kg for DAMA)

The remoTES readout design allowed to produce first Nal calorimeter that achieved the performance goal (E_{thr} < 2keV); remoTES also of interest for other delicate targets and applications

COSINUS is constructing full steam a unique and modern low-background cryogenic facility at the Gran Sasso underground lab; first data taking is scheduled to start early 2024 !

Stay tuned, promising potential for new discoveries in the coming years !

Thank you for your attention

EXTRA MATERIAL

RATE vs. MODULATION AMPLITUDE

F. Kahlhöfer, KS et al., JCAP 1805 (2018) no.05, 074

Central idea: modulation amplitude
cannot be larger than (average) absolute rate:
$$\overline{R} \ge S$$
COSINUSMean rate $\overline{R} = \frac{1}{2} [R(t = June 1^{st}) + R(t = Dec. 1^{st})]$ DAMAModulation Amplitude $S = \frac{1}{2} [R(t = June 1^{st}) - R(t = Dec. 1^{st})]$

→ low background condition makes it possible to test DAMA in a single annual cycle

SIMULATED DATA FOR 100 kg days (gross-exposure)

RESOLUTIONS

ENERGY CALIBRATION

Since 1928 SICCAS

QF for Na recoils across crystals

TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

MAX PLANCK INSTITUTE FOR PHYSICS | K. SCHAEFFNER