Searching for axion-like dark matter with precision NMR: the Cosmic Axion Spin Precession Experiments

Alex Sushkov (CASPEr collaboration)

E.S.

Searching for interactions of axions and axion-like particles

- 1. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 2. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) \approx a_0 \cos \omega_a t$
- 3. 3 possible (non-gravitational) interactions with standard model particles:

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

[D. Aybas et al., *Phys. Rev. Lett.* **126**, 160505 (2021)] [D. Aybas et al., *Quant. Sci. Tech.* **6**, 034007 (2021)] [D. Budker et al., *Phys. Rev. X* **4**, 021030 (2014)] [A. Garcon et al., Sci. Adv. **5**, eaax4539 (2019)] SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

SHAFT \rightarrow a kHz-MHz search using

Searching for interactions of axions and axion-like particles

CASPEr-electric

CASPEr-gradient

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

[D. Aybas et al., *Phys. Rev. Lett.* **126**, 160505 (2021)] [D. Aybas et al., *Quant. Sci. Tech.* **6**, 034007 (2021)] [D. Budker et al., *Phys. Rev. X* **4**, 021030 (2014)] [A. Garcon et al., Sci. Adv. **5**, eaax4539 (2019)]

spin ensemble acts as the transducer

axion-like field

electromagnetic sensor measures spin ensemble evolution

flexibility to optimize spin ensemble parameters to optimize transducer efficiency \rightarrow maximize sensitivity

Searching for axionic coupling to spin with magnetic resonance

signal

effective interaction: $\mathcal{H}_{CASPEr} = -(\hbar \gamma_I \boldsymbol{B}_1^* \cos \omega_a t) \cdot \boldsymbol{I}$

 $\mathcal{H} = -\hbar\gamma_I \boldsymbol{B}_0 \cdot \boldsymbol{I} - (\hbar\gamma_I \boldsymbol{B}_1^* \cos \omega_a t) \cdot \boldsymbol{I}$

1) placing a spin-1/2 into an external magnetic field splits the spin states by $\gamma_I B_0$

2) spin polarization (thermal or optical) in a cm³ sample

3) resonance: $\omega_a = \gamma_I B_0$

- axion-spin interaction can now flip spins!
- sample magnetization tilts and precesses

4) a magnetometer next to the sample detects the magnetic field created by this precessing magnetization

5) search for unknown frequency ω_a by sweeping bias magnetic field B_0 , look for resonance

an NMR experiment with no RF magnetic field, instead axion-like dark matter flips spins

- constant bias magnetic field B_0
- spin-axion interaction plays the role of the RF field B_1

Searching for axionic coupling to spin with magnetic resonance

effective interaction: $\mathcal{H}_{CASPEr} = -(\hbar \gamma_I B_1^* \cos \omega_a t) \cdot I$ $\mathcal{H} = -\hbar \gamma_I B_0 \cdot I - (\hbar \gamma_I B_1^* \cos \omega_a t) \cdot I$

1) placing a spin-1/2 into an external magnetic field splits the spin states by $\gamma_I B_0$

2) spin polarization (thermal or optical) in a cm³ sample

- 3) resonance: $\omega_a = \gamma_I B_0$
 - axion-spin interaction can now flip spins!
 - sample magnetization tilts and precesses

4) a magnetometer next to the sample detects the magnetic field created by this precessing magnetization

5) search for unknown frequency ω_a by sweeping bias magnetic field B_0 , look for resonance

an NMR experiment with no RF magnetic field, instead axion-like dark matter flips spins

in SHAFT we achieved sensitivity $\approx 10^{-18} \,\mathrm{T}$

[D. Budker et al., Phys. Rev. X 4, 021030 (2014)]

CASPEr program

Dmitry Budker, Peter Graham, Derek Kimball, Surjeet Rajendran, Alex Sushkov

Millimeter-scale CASPEr-e axion-like dark matter search

Millimeter-scale CASPEr-e axion-like dark matter search

Towards the centimeter-scale CASPEr-e QCD axion dark matter search

[F. Bloch, *Phys. Rev.* **7-8**, 460 (1946)]

10

Boston CASPEr-electric search for the EDM coupling

Ц

solid-state NMR apparatus in a dilution refrigerator

spin projection noiselimited NMR search for axion-like dark matter

condition for an experiment limited by spin projection noise:

$$\bullet \quad \theta_c = 50 \,\mathrm{mK}, \quad Q_c > 3 \times 10^4$$

[D. Aybas et al., Quant. Sci. Tech. 6, 034007 (2021)]

preliminary noise data:

