

New Results from HAYSTAC's Phase II Operation with a Squeezed State Receiver

Michael Jewell

Yale University

UCLA Dark Matter, April 2023

4/1/2023 UCLA Dark Matter

Michael Jewell, Yale University

Axions as Dark Matter

- Solve CP Problem + Dark Matter
 - Axion mass/coupling is unknown
- Post inflation models
 - $m_a > 10 \ \mu eV [1,2]$
- HAYSTAC target
 - ~20 µeV

Review of Particle Physics 2020, A. Ringwald, L.J. Rosenberg and G. Rybka

[1] E. Berkowitz, M. I. Bucho, and E. Rinaldi. Phys. Rev. D, 92 034507, 2015 [2] S. Borsanyi, Z. Fodor, J. Guenther, et al. Nature, 539 69, 2016

<u>**HA**</u>loscope at <u>**Y**</u>ale <u>**S**</u>ensitive <u>**T**</u>o <u>**A**</u>xion <u>**C**</u>DM

- Located at Yale's Wright Lab
- Copper Microwave Cavity
 - V: 1.5L
 - *v_c*: 3.6-5.8GHz
 - Q: ~45k
- 8T Superconducting Solenoid
- Dilution Fridge ~60mK
- Josephson Parametric Amplifier (JPA)

$$\frac{d\nu}{dt} \propto \frac{\eta Q B^4 V^2 C^2}{N^2} \longrightarrow \frac{d\nu}{dt} \propto \nu^{-\frac{14}{3}}$$

Josephson Parametric Amplifier (JPA)

- Phase Sensitive Amplifier
- Can operate in Phase Insensitive Mode
 - Near Quantum limited amplifiers
- Phase sensitive mode can produce "Squeezed" States

 $\frac{h\nu_c}{2}(\hat{X}^2 + \hat{Y}^2)$

 $[\widehat{X}, \widehat{Y}]$

Squeezed State Receiver (SSR)

Michael Jewell, Yale University

Bandwidth Enhancement

Michael Jewell, Yale University

Bandwidth Enhancement

HAYSTAC Timeline

- Operating since 2016
- Two Phases
 - **<u>Phase I</u>**: Single JPA, Phase-Insensitive Measurement
 - **Phase II:** Two JPAs, Phase-Sensitive Measurement

Name		Amplifier	Dates	Freq. Range	Sensitivity	Publication
Phase I		Phase Insensitive	Jan. 2016 – Jan. 2017	5.6–5.8 GHz	$2.70 imes g_{\gamma}^{KSVZ} $	Phys. Rev. D 97 (2018)
(Dhase II	a	Phase Sensitive	Sept. 2019 – April 2020	4.100-4.140 GHz, 4.145-4.178 GHz	$1.95 imes g_{\gamma}^{KSVZ} $	<i>Nature</i> 590 (2021)
Phase II	C		July 2021 – Nov. 2021	4.459–4.523 GHz	$2.06 \times g_{\gamma}^{KSVZ} $	arXiv:2301.09721 (2023)

JPAs in HAYSTAC

JPAs in HAYSTAC

Tuning with SSR

- Five parameter optimization
- JPAs tuned to match Cavity Resonance
 - I_{sz} : Squeezer Flux Bias
 - I_{AMP}: Amplifier Flux Bias
- Amplifiers share same Pump Source
 - P_P: Amplifier Gain
 - A: Squeezer Gain
 - θ : Phase difference

Phase II Timeline

	Days [#]	Spectra [#]	Freq. [MHz]
Phase-IIa	105	861	73
Phase-IIa (rescans)	53	508	"
Phase-IIb	51	791	64
Phase-IIb (rescans)	48	799	"

- Phase IIa (Sept 2019 April 2020):
 - First Quantum enhanced axion search
 - Scan rate enhanced by ~2x
 - K.M. Backes et al., Nature 590 (2021)
- Phase IIb (July 2021 Nov 2021):
 - Upgraded search at higher frequency with SSR
 - arXiv:2301.09721 (2023, Accepted to PRD)

Improvements for Phase IIb

Higher Frequency JPAs

New pair of JPAs to extend frequency above 4.2GHz

Reduced DAQ Deadtime

Improved DAQ routine to reduce deadtime from in-situ processing (1.6x speed up)

	Fractional Time [%]		
	Phase IIa	Phase IIb	
DAQ	40	10	
Tuning	12	8	
Livetime	48	82	

Results From HAYSTAC Phase II

Results From HAYSTAC

Continued Phase II Operation

 Using the same cavity/JPAs there are still ~450MHz between 4.2 – 4.7GHz to be searched

Beyond Phase II

Conclusion

- HAYSTAC is continuing to search for axions with $m_a > 10 \ \mu eV$
- Completed two runs with Squeezed State Receiver
 - Covering 137MHz between 4.10GHz and 4.52GHz
 - Achieving sensitivity $\sim 2 \times |g_{\gamma}^{KSVZ}|$
- Continuing search with current setup + developing new ideas to search at higher frequency

Thanks

4/1/2023 UCLA Dark Matter

Michael Jewell, Yale University

Backups

Detector Calibration

Michael Jewell, Yale University

System Diagram

Tuning with SSR

• Five parameter optimization

First Demonstration

 E_t

- Demonstration by Colorado Group
- SSR speed up for "Fake" Axion signal

(b)

Michael Jewell, Yale University

Quantum Limit for Haloscopes

Cavity Hamiltonian:

Vacuum Fluctuations:

Linear Amplifier:

Total SQL:

 $\widehat{H} = \frac{h\nu_c}{2}(\widehat{X}^2 + \widehat{Y}^2) \qquad \left[\widehat{X}, \widehat{Y}\right] = \frac{i}{2}$ $N_v \geq \frac{1}{2}hv_c$ $N_A \ge \frac{1}{2}h\nu_c$

 $N_{total} \ge h\nu_c$

C. M. Caves. Phys. Rev. D, 26 1817-1839, (1982)

H. A. Haus and J. A. Mullen. Phys. Rev., 128 2407-2413, Dec 1962.

AMP

Haloscope At Yale Sensitive To Axion CDM

<u>JPA</u>

JPA Shield

Extending Beyond 4.2GHz

- Previous search limited by JPA Range
 - Max Frequency ~4.2GHz
- New JPAs designed to extend to 4.6-4.7GHz

Improved Livetime

• Ideally always recording cavity field • 1hr of data @ 10 MS/s

- ~100GB per tuning
- >100TB for Phase IIa

4/1/2023 UCLA Dark Matter

Improving Livetime

- DAQ Deadtime
 - Parallelization of FFT
 - Optimization of Data Transfer
- Tuning Stabilization
 - Reinstalled cavity has less mode drift after tuning
 - Better rod alignment
- Phase IIb achieved 78% average livetime
 - 82% after tuning improvement

	Fractional Time [%]			
	Phase IIa	Phase IIb		
DAQ	40	10		
Tuning	12	8		
Livetime	48	82		

Operating JPAs Near Magnet

- JPAs are extremely sensitive to stray B-Fields
 - << 1 flux quantum (~2G)

Single Photon Detection

- Ultimate goal of "Squeezing" is Single Photon Detection
 - Lose Spectral Information
 - Only shot noise limited
 - Payoff >~10GHz (S. K. Lamoreaux et al., Phys. Rev. D 88, 035020 (2013))

