DARK MATTER DETECTION INFORMED BY GALAXY FORMATION SIMULATIONS

James Bullock (UC Irvine)

DM Map (full physics)

10 kpc

Monthly Notices **ROYAL ASTRONOMICAL SOCIETY**

MNRAS 513, 55–70 (2022) Advance Access publication 2022 April 15

Amplified J-factors in the Galactic Centre for velocity-dependent dark matter annihilation in FIRE simulations

Sliding into DM: Estimating the local dark matter density and velocity distribution from simple observables

PATRICK G. STAUDT,¹ JAMES S. BULLOCK,¹ AND THE FIRE COLLABORATION ¹Department of Physics and Astronomy, University of California, Irvine, California 92697

Daniel McKeown[®],¹^{*} James S. Bullock[®],¹ Francisco J. Mercado[®],¹ Zachary Hafen[®],¹ Michael Boylan-Kolchin[®],² Andrew Wetzel[®],³ Lina Necib[®],⁴ Philip F. Hopkins^{®4} and Sijie Yu^{®1} ¹Center for Cosmology, Department of Physics and Astronomy, University of California Irvine, 4129 Reines Hall, CA 92697, USA ²Department of Astronomy, The University of Texas at Austin, 2515 Speedway Stop C1400, Austin, TX 78712, USA ³Department of Physics, University of California, Davis, CA 95616, USA ⁴TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125, USA

12 MW-size galaxies galaxies

$M_{vir} = 0.8-1.6e12 M_{sun}$ $M_* = 3-10.e10 M_{sun}$

~100M DM particles per halo

Restance 2 simulations of Milky Way-mass galaxies

Resolve central ~400pc of galactic center (<3 degrees)

Outline

- 1. Indirect detection:
- Amplified Galactic J-factors (McKeown et al. 2022)
 - 2. Direct detection:
 - Estimating local DM density
- Local velocity distribution
- (**Staudt** et al. 2023)

Image: Garrison-Kimmel et al. 2018

Outline

- 1. Indirect detection:
- Amplified Galactic J-factors (McKeown et al. 2022)

2. Direct detection:

- Estimating local DM density
- Local velocity distribution
- Staudt et al. 2023)

Image: Garrison-Kimmel et al. 2018

Fermi Galactic Center excess in y-rays

Annual Review of Nuclear and Particle Science The Fermi–LAT Galactic Center Excess: Evidence of Annihilating Dark Matter?

Simona Murgia

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA email: smurgia@uci.edu

- Consistent w DM particle ~50 GeV w/ thermal cross section.
- Other interpretations possible. Could be unresolved point sources, e.g. millisecond pulsars.

See: Tracy Slatyer's talk yesterday

- Shape of emission seems more consistent w/ stellar population?

From Abazajian et al 2020

Velocity-dependent annihilation cross section?

S-wave: $\sigma v \propto \text{const.}$ $J_s(\theta) = \frac{1}{c^2} \int dl [\rho(\vec{r})]^2$

P-wave: $\sigma v \propto (v/c)^2 J_p(\theta) = \frac{1}{c^2} \int dl [\rho(\vec{r})]^2 \mu_2(\vec{r})$

D-wave: $\sigma v \propto (v/c)^4 J_p(\theta) = \frac{1}{c^2} \int dl [\rho(\vec{r})]^2 \mu_4(\vec{r})$

(c.f. Robertson & Zentner 2009; Giacchino, Lopez-Honorez & Tytgat 2013; Choquette, Cline & Cornell 2016; Boddy, Kumar & Strigari 2018; Petac, Ullio & Valli 2018; Arguelles et al. 2019; Johnson et al. 2019; Board et al. 2021)

Galaxy Formation boosts DM velocity dispersion

McKeown et al. 2022

S-wave: $\sigma v \propto const.$

Dark Matter Only

McKeown et al. 2022

Full physics

- No substructure
- Rounder emission

p-wave: $\sigma V \propto (V/C)^2$

Dark Matter Only

McKeown et al. 2022

Full physics

- Brighter (~ 10 times)
- Rounder emission

d-wave: $\sigma V \propto (v/c)^4$

Dark Matter Only

McKeown et al. 2022

Full physics

- MUCH Brighter (~ 100 times)
- Rounder emission

Emission more varied & centrally concentrated In full physics simulations

McKeown et al. 2022

See also: Board et al. 2021

P-wave constraints: much closer to thermal cross section

Outline

- 1. Indirect detection:
- Amplified Galactic J-factors
- (McKeown et al. 2022)
 - 2. Direct detection:
 - Estimating local DM density - Local velocity distribution (**Staudt** et al. 2023)

Image: Garrison-Kimmel et al. 2018

Vc at solar radius known extremely well

WISE, 2MASS, Gaia. Ш

Find tight correlation w/ local DM density & Vc

(e.g. deSales+19, Benito+21)

Local DM velocity dispersion also correlates w/ Vc

12m 2b 12i	Observed V _c = 229 km/s = DM velocity dispersion near l			
23		$\sigma_{3D,DM}(R_{\odot}) = 279 \pm 18 \mathrm{km s^{-1}}$		

People often **assume** $\sigma^2 = 3v_c^2/2$ $=> \sigma \sim 280$, so \sim consistent

>arth

SHAPE of DM velocity distribution correlates w/ Vc!

NOT Maxwellian distribution

Staudt+23

Maxwellian + damping term

Predicted DM Velocity Distribution Near Earth

Staudt+23

$$f(|\vec{v}|) = \frac{1}{N(v_0, v_{damp})} \exp\left(-\frac{|\vec{v}|^2}{v_0^2}\right) \Theta(v_{damp} - v_0(v_{c,MW})) = \frac{1}{248 \pm 19} \exp\left(-\frac{|\vec{v}|^2}{v_0^2}\right) \exp\left(-\frac{|\vec{v}|^2}{v_0^2}\right) = \frac{1}{248 \pm 19} \exp\left(-\frac{|\vec{v}|^2}{v_0$$

Galaxy formation sims & DM detection

1. Galactic J-factors Compared to DMO sims:

- 1) rounder on sky
- 2) enhanced for p/d-wave

McKeown+22

2. Local DM ρ & σ

Observed Vc allows direct determination of

 $\rho_{\rm DM}(R_{\odot}) = 0.42 \pm 0.05 \,{\rm GeV \, cm^{-3}}$ $\sigma_{\rm DM}(R_{\odot}) = 279 \pm 18 \,\rm km \, s^{-1}$

