Velocity-dependent J-factors in FIRE simulations of Milky-Way size galaxies for indirect detection experiments

UCLA Dark Matter 2023

Thursday 30 March 2023 09:30 (15 minutes)

I present dark matter indirect detection predictions (J-factors) for the Galactic-center using 12 highly-resolved, hydrodynamic FIRE-2 zoom cosmological simulations of Milky Way size galaxies. In addition to velocity-independent (s-wave) annihilation cross-sections $\langle \sigma v \rangle$, we also calculate effective J-factors for velocity-dependent models, where the annihilation cross-section is either p-wave ($\propto v^2/c^2$) or d-wave ($\propto v^4/c^4$). Compared to dark-matter-only (DMO) counterparts, the FIRE runs produce central dark matter velocity dispersions that are systematically larger than in DMO runs by factors of ~2.5-4. They also have a larger range of central (~400 pc) dark matter densities than the DMO runs ($\rho_{\rm FIRE}/\rho_{\rm DMO} \boxtimes 0.5$ -3). At 3 deg from the Galactic Center, FIRE J-factors are 3-60 (p-wave) and 10-500 (d-wave) times higher than in the DMO runs. The change in s-wave signal at 3 deg is more modest and can be higher or lower (~0.3-7), though the shape of the emission profile is flatter (less peaked towards the Galactic Centre) and more circular on the sky in FIRE runs. Given that p-wave J-factors that are significantly enhanced compared to most past estimates, contrary to previous expectations, such models may be in the range of detection in the not too distant future.

Primary author: BULLOCK, James (University of California, Irvine)

Presenter: BULLOCK, James (University of California, Irvine)

Session Classification: SESSION 5: Astrophysics and Cosmology-1 (CHAIR: Graciela Gelmini-UCLA)

Track Classification: Dark matter and structure in the Universe