

Tesseract

Bjoern Penning

- Landscape & Design Choices
- Tesseract Overview
- Recent Progress

- Low mass DM (sub-GeV) consistent with simple thermal production after inflation (like other massive particles)
 - Typically require a new force mediator too, not just the DM particle.
- Direct detection searches via electron scattering or nuclear scattering
- **Tesseract**: New light DM experiment using multiple detection channels

We want to go lower & deeper!

- **Exposure**: Rate scales inversely with dark matter mass
- Compare ton scale LXe with gram scale low mass DM experiments

 Lower mass searches require light targets and very low energy thresholds

Light DM Landscape

- Facing **new landscape**
- Nuclear backgrounds: Exists but less significant due to small ROI:
 - γ down-scatter to low E, can also induce NR via Thomas-Delbrück
 - Epithermal neutrons
- Novel backgrounds:
 - Sensors sensitive to smallest energies
 - IR backgrounds, parasitic power, phonons, vibrations, transition radiation etc
- New calibrations necessary
- We know some of the challenges we're facing, but some cliffs are probably still hidden in the fog

Low Energy Excess

- Total energy deposition (keV)
 Low energy excess, observed in many experiments: SuperCDMS, Edelweiss, Nucleus, DAMIC, SENSEI etc
 - Primary characteristic energy Scale: eV?
 - \circ $\,$ Probably more than one origin
 - Design driver: Chose methods to reject LEE

- Our goals
 - Low energy threshold
 - Scalable
 - Minimize backgrounds
 - Ability to discriminate and understand remaining and novel backgrounds

Athermal Phonon Detectors

- Collect and concentrate athermal phonon energy into AI fins
 - Phonons break Al cooper pairs
 - Quasiparticles are absorbed by W TES connected to AI fin

- Large collection area without the drawback of the heat capacity of a large sensor
 - Signal is degraded by phonon collection efficiency factor (~20%)
- Readout of all targets identical except the substrate
- More DM science doesn't increase cost significantly!

- Energy sensitivity is primary driver for low mass DM
- All detectors use TES readouts
 - $\circ \quad \text{Zero E-field} \rightarrow \textbf{no dark-currents}$
 - \circ Already achieve very low E threshold \rightarrow Goal: 100 meV-ish
- Targets: SPICE (polar crystals) & HeRALD (superfluid helium).

Operating TES sensors

• Array of tungsten TESs: $T_c = 55$ mK, about 2.26 eV resolution (σ)

Target	NRDM	ERDM (> 1 MeV)	ERDM (keV - MeV)	Absorption	Background rejection
AI2O3/SiO2					
GaAs					
Superfluid helium					

- Targets relatively cheap, hence we consider several
- Al_2O_3 sensitivity across the board.
 - One type of signal (phonon), multiple readouts to reduce instrumental background
- GaAs and superfluid helium
 - Advantages in background rejection: multiple signal channels and multipixel coincidence-based instrumental background rejection

- Sapphire (Al₂O₃):
 - **Sapphire** supports many optical phonon modes.
 - DM recoiling recoiling off the lattice, 'exciting a phonon'
 - **Optical phonons** kinematically well-matched to low-mass $DM \rightarrow$ effective energy transfer
 - Coupling to E&M-like inputs due to electric dipole \rightarrow dark photon sensitivity

See <u>Tongyan's talk</u> Thursday for more info

GaAs:

- **Polar crystal & bandgap** well matched to kinematic region of low mass DM
- **Background discrimination** using phonon/photon ratio
- Photon-photon and phonon-phonon coincidence can reduce instrumental bkgds
- High light yield (125 ph/keV, 1904.09362)

Bjoern Penning

- **Superfluid helium** has significant additional advantages:
 - Quantum evaporation signal gain
 - Multiple signal channels (rotons, phonons, scintillation, triplet excimers)

Xe

Ge

Ar

Si

Ne

He

- Background rejection by requiring coincidence
- Superfluid Helium: no LEE due due stress microfractures since it is a liquid
- See Scott Hertel's talk (next)

- Measurement of ⁴He light yield of ER and NR
 - o <u>arXiv:2108.02176</u>
- Good agreement with an empirical model
- High NR light yield
- Offers ER/NR discrimination via photon/roton ratio

Recent Process - Stress

- Two identical detectors (as possible)
 - One glued
 - One suspended from wire bonds
- **TES based readout** measures athermal phonon pulses in substrate
- Successful mitigation of mounting stress
 - Two orders of magnitude difference in rate → stress is major source of LEE
- Investigating other sources: stress from sensor films, crystal and IR leakage
- See <u>arXiv:2208.02790</u>

Bjoern Penning

Recent Progress - SeBe

- Source built & works
- Favorable **n flux**: ~5 cm⁻²s⁻¹
- Portable, ideal for **CE***v***NS** and **light DM** experiments
- See <u>arXiv:2302.03869</u>

- SbBe photoneutron + Fe shield
- Remarkable coincidence:
 - ¹²⁴SbBe neutron energy: 23.47 keV
 - Fe n-transmission resonance:24.54 keV
- Fe transparent to neutron, serves as collimator and very efficient gamma shield

- Have now a low energy neutron source
- Primary strategy: Have a neutron of known energy, tag its scattering angle
- Large arge keV Neutron backing detector for low energy NR calibrations

- ⁶Li + Scintillator + Reflector + WS fiber + SiPM
- Eff: 25% eff. & affordable
- See <u>arXiv:2203.04896</u>

Bjoern Penning

- Developed a novel shielding concept: **Tesseract Design**
 - 1.2 DRU at 1 keV
 - About 0.75 DRU with ancient lead
- Advanced design considering fabrication, installation, operations, budgeting & underground constraints

Bjoern Penning

Location

Mu ich

Salzburg

Triester

Ve ce

San Marino

Italy

0

Au

Bjoern Penning

• Potential layout in Modane

Potential Sensitivity

- Tesseract will probe multiple unexplored DM parameter spaces
 - A discovery could come at any point

Snowmass Lol

M

• Tesseract is:

• Two detectors: Spice & Herald

- Sensitive to wide variety of models
- Discriminate & understand backgrounds
- Discover DM!
- TES and calibration R&D
- Engineering
- Underground facility
- Project management
- **Progress** in all of those topics
- Start construction 2026

Backup

Bjoern Penning

Possible Layout in Majorana Hall at SURF

Bjoern Penning

See Scott Hertel's talk (next up)

- Superfluid Helium: no stress microfractures due to liquid
- Multiple Pixel Coincidence for He DM events
- DM recoiling off of He: produces signals in multiple roton detectors
 - Require multiple pixel coincidence for He events
 - Pulse Shape discrimination possible!
- HeRALD with multiple background rejection techniques is complementary to crystals

- Momentum transfer crucial
- Low mass difficult
- LXe dual-phase TPCs demonstrated best sensitivity for masses at about 1 GeV and more

Stem Back

- Total background dominated by internal background
- Total rate for Stem design 1.2 DRU at 1 keV
- Further background reduction possible via multi-detector coincidence veto

• Some more engineering examples:

Bjoern Penning

- Coherent excitations:
 - Vibrational energy scale in crystals is O(100 meV)
 - DM scatters coherently with the entire crystal, producing a single phonon
 - Favorable kinematics of optical phonon production: All of the kinetic energy of the DM can potentially be used for phonon creation
 - Optical phonons modulate the electric dipole in polar crystal \rightarrow couple strongly to IR photons \rightarrow DM models that interact through a kin. mixed dark photon

- Low band gaps:
 - Just as with optical phonons, the gapped nature of an electronic excitations in semiconductors allows them to maximally extract kinetic energy when scattering with or absorbing DM
 - Due to a strong rate dependence upon energy, low bandgap semiconductors like Ge, Si (SENSEI and SuperCDMS HV), and GaAs (SPICE) are the preferred target candidates.
 - With GaAs we can collect both photons and phonons!
 - Allows background rejection through phonon/photon ratio
 - Photon-photon and phonon-phonon coincidence should reduce instrumental backgrounds isolated to a single sensor

SPICE/HeRALD testbeds

Future Sensitivity

- Tesseract will probe multiple unexplored DM parameter spaces
 - A discovery could come at any point
 - First physics results with surface runs forthcoming

Snowmass Lol

Instrumental Backgrounds

• E-field leads to dark current: PMT, TPCs, SiPMs, SuperCDMS HV

- Want to get rid of E-field
- Using transition-edge sensor (TES)
 - No E field

• O(100 meV) thresholds

