Resolving DAMA

Reina Maruyama

Nal Experiments: a Global Effort

Gran Sasso Yangyang * Kamioka

COSINE-100

Australia

COSINUS

DAMA

SABRE

²²Na→²²Ne

Goal for this talk: Summarize where we are, Start discussion on reconciling DAMA

PICOLON

χ²/NDF: 44.1 / 27

c/ke//kg/

0.2

0.15

0.1

⁴⁰K

χ²/NDF: 42.9 / 14

²²Na

0.2

0.1

Boulby

COSINE-100: no excess over known backgrounds

Same target medium, potential for variation among crystals

- Rules out WIMPs for DAMA with 60 days of data

Nature 564, 83 (2018) Sci Adv. 2021 Nov 12;7(46):eabk2699

• 1.7 yrs of data excludes WIMPs for pessimistic quenching factor

Phys. Rev. D. 106, 052005 2.8 yrs of COSINE-100 not yet conclusive

- 0.0067 ± 0.0042 cpd/kg/keV @ 1 6 keV
- Consistent with both DAMA and zero modulation
- Data ready for 3 more years exposure

energy (keVee)

Summary of the results obtained in the additional investigations of possible systematics or side reactions – DAMA/LIBRA-phase1

(NIMA592(2008)297, EPJC56(2008)333, J. Phys. Conf. ser. 203(2010)012040, arXiv:0912.0660, S.I.F.Atti Conf. 103 (211), Can. J. Phys. 89 (2011) 11, Phys. Proc. 37 (2012) 1095, EPJC72 (2012) 2064, arxiv:1210.6199 & 1211.6346, IJMPA28(2013)1330022, EPJC74(2014)3196)

Source	Main comment
RADON	Sealed Cu box in HP Nitrogen atmos 3-level of sealing, etc.
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in c with multi-ton shield→ huge heat ca + T continuously recorded
NOISE	Effective full noise rejection near thre
ENERGY SCALE	Routine + intrinsic calibrations
EFFICIENCIES	Regularly measured by dedicated c
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background

SIDE REACTIONS

Muon flux variation measured at LNGS <3×10⁻⁵ cpd/kg/keV

+ they cannot satisfy all the requirements of annual modulation signature

TAUP 2015, P. Belli

Cautious upper limit (90%C.L.)

- <2.5×10⁻⁶ cpd/kg/keV sphere,
- <10⁻⁴ cpd/kg/keV contact pacity
- <10⁻⁴ cpd/kg/keV eshold
 - <1-2 ×10⁻⁴ cpd/kg/keV
- calibrations <10⁻⁴ cpd/kg/keV
 - <10⁻⁴ cpd/kg/keV

Thus, they cannot mimic the observed annual modulation effect

		TAUP 2015, P. Belli
Summary of possib!	O06.5255One Model Explains DAMA/LIBRA, CoGENT, CDMS, and XENONJohn P. Ralston Department of Physics & Astronomy, 	DNS Sel 2.0660, 2)2064, 3196)
Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV
satisfy c annual	+ they cannot all the requirements of modulation signature	y cannot mimic the served annual dulation effect

			TAUP 2015, P. Belli
Summary of possibl	rXiv:1006.5255 One Model Explains DAMA/LIBRA, CoGENT, CDMS, and XENON John P. Ralston Department of Physics & Astronomy, The University of Kansas, Lawrence, KS 66045	bns se1 2.0660, 2)2064, 3196)	
Source	A testable conventional hypothesis for the	DAMA-LIBRA anni	al modulation
RADON TEMPERATURE	David Nyg Physics Division, Lawrence Berk 1 Cyclotron Road, Berl	ren teley National Laboratory keley, CA 94720	
	with multi-ton shield→ huge heat capacity + T continuously recorded		
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV	
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV	
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV	
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV	
sat an	+ they cannot isfy all the requirements of nual modulation signature	y cannot mimic the served annual dulation effect	

	TAUP 2015, P. Belli
T, pns	
Se 2066	0
ny, S 66045	4, 6)
is for the DAMA-LIBRA ann	ual modulation
David Nygren	
rence Berkeley National Laborator	ry
Road. Berkelev. CA 94720	
L REVIEW LETTERS	week ending 22 AUGUST 2014
Ş	
AMA with Neutrons from Muon	s and Neutrinos
onathan H. Davis [*]	
gy, Durham University, Durham DH1 3LE, U cript received 5 August 2014; published 21 A	Inited Kingdom ugust 2014)
NU CPU/Kg/Kev	
\sim (10-5 and //cov//cov/	
Thus, they cannot mimic the	
modulation effect	

	TAUP 2015, P. Belli
T,	
se1	L D.
ny, S 66045	4,
is for the DAMA-LIBRA ann	ual modulation
David Nygren rence Berkeley National Laborator Road. Berkelev. CA 94720	ry
L REVIEW LETTERS	week ending 22 AUGUST 2014
S AMA with Neutrons from Muons	s and Neutrinos
ing in a Sea of Radioactiv	e Argon?
D. N. McKinsey ^{1,2,} *	
keley, Department of Physics, Berkel Laboratory, 1 Cyclotron Rd., Berkele (Dated: March 28, 2018)	ley, CA 94720, USA ey, CA 94720, USA

Thus, they cannot mimic the observed annual modulation effect

	TAUP 2015, P. Belli
T,	
<i>se1</i> 2.0660 2)2064	D, 4,
is for the DAMA-LIBRA ann	ual modulation
David Nygren rence Berkeley National Laborator Road. Berkeley. CA 94720	y
L REVIEW LETTERS	week ending 22 AUGUST 2014
S AMA with Neutrons from Muons	s and Neutrinos
ing in a Sea of Radioactiv	e Argon?
n through Photomultiplie f the DAMA Seasonal V	er Tubes – The Variation Effect
renc Šegedin ^{2,3} , Ivan Ferenc Šegedin ³ , M	arija Šegedin Ferenc ³

arXiv:1102.0815

A testable conventional hypothesis for the DAMA-LIBRA annual modulation

David Nygren Physics Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720

DAMA's signal may be caused by phosphorescence or relaxation of crystal defects caused by muons

Wright Lab, Yale University

Muon Flux

 2.93 ± 0.04 muons/crystal/day, 12.3 ± 1.7% modulation amplitude

DM-Ice17 Muon Events

IceCube Coincidence

- 93% of DM-Ice Det-1 muons are coincident with IceCube events
- **DM-Ice location information lowers** lacksquaremisreconstruction rates and improves location reconstruction through IceCube
 - Little impact on astrophysical parameters

Muon-Induced Phosphorescece in DM-Ice17

- Long-lived phosphorescence observed in DM-Ice17
- Muon hits followed by sharp increase in photon rate

Iow energy pulses with 5.5 s decay time

Take away: too few muons & not enough photons for > 1 keV

A. Hubbard

PRD 93, 042001 (2016)

Reconstructed Energy [keV_{ee}]

Modulation introduced with DAMA-like analysis

Talk by G. Adhikari, Poster by S. Hollick et.al.

Future of Nal

$$\sigma_{SD} = \frac{32}{\pi}G$$

Summary of Spin-dependent target opportunities				
Couples to net nuclear spin J _N $\sigma_{sD} = \frac{32}{\pi} G_F^2 \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \frac{J_N + 1}{J_N} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2$				
neutron coupling		proton cou	pling	
⁷³ Ge (7.73%) $ = .46$ CDMS,EDE	LWEISS	⁷ Li (92.4%)	<s<sub>p>=.5</s<sub>	CRESST(LiAlO ₂ , Li ₂ MoO ₄)
29Si (4.68%) $ = .13$ DAMIC/SEI	NSEI, CDMS	¹²⁷ (100%)	<s<sub>p>= .31</s<sub>	
$170 (0.037\%) < S_n > =.5$ CRESST (C	CaWO ₄)	²³ Na (100%)	<s<sub>p>= .25</s<sub>	Nal (and Csl) DAMA, SABRE, ANAIS,
129Xe (26%) <s<sub>n>= .33 LXe TPCs</s<sub>		¹³³ Cs (100%)	$=37$	COSINE-100, COSINUS
131Xe (21%) $=27$		¹ H (100%)	<s<sub>p> = .5</s<sub>	Snowball (H ₂ O)
proton & neutron coupling				
¹⁹ F (% depends on fluorocarbon)	$ =11$	$< S_p > =.44$	PICO (CF ₃ I,	C ₃ F ₈)
⁶ Li (7.6%)	$< S_n > = .472$	<s<sub>p>= .472</s<sub>	CRESST (Li	AIO ₂ , Li ₂ MoO ₄) 11

Prisca Cushman, Wednesday

Dark Matter searches with Nal

EFT Operators Sci Adv. 2021 Nov 12;7(46):eabk2699

COSINUS

- Nal crystals as cryogenic detectors
- NR vs ER via TES sensors + SQUIDs:
- Heat (phonons) + scintillation

SABRE-North/South

Unambiguous test by running in both hemispheres

Conclusions

- DAMA sees annual modulation
- No signal from other direct detection experiments
- ANAIS-112 & COSINE-100 offer direct test, no clear observation of modulation
- However, no explanation for DAMA's signal
 - SABRE & COSINUS may offer new information
- Nal to continue with dark matter searches (see G. Adhikari's talk)

