03/30/2023, UCLA Dark Matter 2023 Cosmology of Axion rotation Keisuke Harigaya (U Chicago)

1910.02080: Co and KH1910.14152: Co, Hall and KH2301.09647: Badziak and KH

QCD axion

* solves the strong CP problem

* is a good dark matter candidate

Peccei and Quinn (1977) Weinberg (1978), Wilczek (1978)

Preskill, Wise and Wilczek (1983), Abbott and Sikivie (1983), Dine and Fischler (1983)

 $m_a = 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$

a

Dark Matter?

Misalignment mechanism

Preskill, Wise and Wilczek (1983), Abbott and Sikivie (1983), Dine and Fischler (1983)

For the QCD axion,

 $\frac{\rho_a}{\rho_{\rm DM}} = \theta_i^2 \left(\frac{f_a}{10^{12} \,\text{GeV}}\right)^{1.19}$ $m_a = 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$

I will present new cosmological dynamics of the axion, rotations, which

- * enhance axion dark matter abundance and predict larger couplings
- * create baryon asymmetry
- * have implications for new physics other than the axion

Outline

* Axion rotation and dark matter

* Axion rotation and baryon asymmetry

* Discussion

Outline

* Axion rotation and dark matter

* Axion rotation and baryon asymmetry

* Discussion

Kinetic misalignment

Rotation?

Co and KH(2019) Co, Hall and KH(2019)

Conventional picture

 $\dot{\theta}_i = 0$

The kinetic energy goes to axions, enhancing the axion abundance

Non-zero initial angular velocity?

 $\dot{\theta}_i \neq 0$ V + K

Kinetic Misalignment

Without rotation

underproduced

Kinetic misalignment

How to initiate the rotation

Co and KH (2019)

 $P = \mathbf{S} \exp(i \, \boldsymbol{\theta})$

Similar to Affleck-Dine mechanism (1985) with rotating super-partners of quarks and leptons

How to initiate the rotation

 $P = S \times \exp(i\theta)$

minimum $|P| \sim f_a$

Assume a large initial radial field value

Higher order terms $V \sim P^n \sim S^n \cos(n\theta)$

may be effective

Angular motion is induced by the potential gradient

Outline

* Axion rotation and dark matter

* Axion rotation and baryon asymmetry

* Discussion

Axiogenesis

Minimal axiogenesis Co and KH (2019)

The angular momentum of axion rotation (PQ charge) is transferred into baryon asymmetry via QCD and weak interactions

weak

Chiral charge — Baryon

QCD

Minimal axiogenesis Co and KH (2019)

Baryon asymmetry is fixed upon the electroweak phase transition

Minimal axiogenesis

Co and KH (2019)

- 1. Angular velocity $\dot{\theta} f_a^2$
- 2. Decay constant f_a

3. Electroweak phase $T_{\rm EW}$ transition temperature

2. Baryon asymmetry

1. Dark Matter

3 free parameters – 2 densities to fit = 1 free parameter

$$T_{\rm EW} = 1 \,\,{
m TeV} \left(\frac{f_a}{10^8 \,\,{
m GeV}} \right)^{1/2} \left(\frac{0.1}{c_B} \right)^{1/2}$$

 c_B : model-dependent O(0.1) constant

Minimal axiogenesis

$$T_{\rm EW} = 1 \text{ TeV} \left(\frac{f_a}{10^8 \text{ GeV}}\right)^{1/2} \left(\frac{0.1}{c_B}\right)^{1/2}$$

DFSZ and KSVZ axion

Astrophysical lower bound $f_a > \text{few} \times 10^8 \text{ GeV}$

Higher $T_{\rm EW}$ than the SM by new physics that couples to Higgs

Electroweak scale physics

QCD axion

Minimal axiogenesis

$$T_{\rm EW} = 100 \text{ GeV} \left(\frac{f_a}{10^6 \text{ GeV}}\right)^{1/2} \left(\frac{0.1}{c_B}\right)^{1/2}$$

Astrophobic axion

Luzio, Mescia, Nardi, Panci and Ziegler (2017)

Suppressed axion-nucleon, electron, and photon coupling

(This can be naturally realized by appropriate PQ charges of SM fermions) Badziak and KH (2023)

 $m_a = O(1)$ eV is predicted

Axiogenesis and BSM Co and KH (2019)

Baryon number violation from BSM

Majorana neutrino mass, RPV, ... any BSM that you like and contains B

Chiral charge

Baryon

BSM and QCD axion

- 1. Angular velocity
- 2. Decay constant
- 3. BSM parameters

Other BSM

- 1. Dark Matter
- 2. Baryon asymmetry

) axion

One relation among BSM parameters and f_a

Examples

* Majorana neutrino mass

Co, Fernandez, Ghalsasi, Hall and KH (2020) Domcke, Ema, Mukaida, and Yamada (2020) Kawamura and Raby (2021) Bernes, Co, KH and Pierce (2022)

* Baryon number violation in supersymmetric model (RPV) Co, KH, Johnson and Pierce (2021)

* Sphaleron processes in new gauge interaction

KH and Wang (2021)

Summary

* Kinetic Misalignment : Rotation of the axion field produces axion dark matter

Axion dark matter with a large coupling $f_a \ll 10^{11} \text{ GeV}$

* Axiogenesis : Axion rotation produces baryon asymmetry

Baryon number violation by weak anomaly: Modified electroweak phase transition or astrophobic axion with $m_a \sim eV$ That by BSM : A relation between BSM parameters and f_a

Astrophysical implications

* Axion dark matter has large density fluctuations Eroncel and Servant (2022)

Mini-clusters can be formed

Possible spectrum is not yet completely understood

* Kinetic energy of the rotation can dominate the universe

KH et.al. (2019, 2021), Gouttenoire, Servant and Simakachorn (2021)

Imprints on primordial gravitational waves

Axion rotation

More particle-physics, cosmological, and astrophysical implications?

Back up

Kinetic misalignment

Axion fragmentation

Fonseca, Morgante, Sato, Servant (2019) Morgante, Ratzinger, Sato, Stefanek (2021)

$$V(a) = m_a^2 f_a^2 (1 - \cos\frac{a}{f_a})$$

$$a \rightarrow \dot{\theta}t + a(t, x)$$

EOM of the fluctuation at the linear level:

$$\ddot{a}_k + \left(k^2 + m_a^2 \cos\dot{\theta}t\right)a_k = 0$$

oscillating frequency

Parametric resonance

Dolgov and Kirilova (1990), Traschen and Brandenberger (1990), Kofman, Linde and Starrobinsky (1994, 1997), Shatov, Traschen and Brandenberger (1994)

Axion fragmentation

Fonseca, Morgante, Sato, Servant (2019) Morgante, Ratzinger, Sato, Stefanek (2021)

$$\ddot{a}_k + \left(k^2 + m_a^2 \cos\dot{\theta}t\right)a_k = 0$$

Resonance at $k_{\rm PR}$

$$k_{\rm PR} = \theta/2$$

(Effective) rate

$$\Gamma_{\rm PR} \sim \frac{m_a^4}{\dot{\theta}^3}$$

Axion abundance

$$\ddot{a}_k + \left(k^2 + m_a^2 \cos\dot{\theta}t\right)a_k = 0$$

$$n_{a,\text{PR}} = \frac{\rho_{\text{rot}}}{k_{\text{PR}}} \simeq \frac{\dot{\theta}^2 f_a^2 / 2}{\dot{\theta} / 2} = \dot{\theta} f_a^2 = n_{\text{PQ}}$$

Co, KH and Pierce (2021)

(axion number density) \simeq (PQ charge)

Thermalization

Co, Hall and KH (2019)

Earlier EW phase transition

 $V(H,\varphi) = \lambda_{H}^{2} \left(|H^{2}| - v^{2} \right)^{2} + \kappa^{2} \left(\varphi^{2} - v_{\varphi}^{2} \right)^{2} + \lambda^{2} \left(\varphi^{2} - v_{\varphi}^{2} \right) \left(|H|^{2} - v^{2} \right)$ $+c_{H}T^{2}|H|^{2}+c_{\varphi}T^{2}\varphi^{2}.$

ALP cogenesis

ALP genesis

Co, Hall and KH (2020) Domcke, Ema, Mukaida, and Yamada (2020)

Weak

A similar mechanism works for generic ALPs

$$\mathcal{L} = \frac{\partial_{\mu}a}{f_a} \sum_{f,i,j} c_{f_{ij}} f_i^{\dagger} \bar{\sigma}^{\mu} f_j + \frac{a}{64\pi^2 f_a} \left(c_W g^2 W^{\mu\nu} \tilde{W}_{\mu\nu} \right)$$

Chiral charge

weak

 C_W

Cf

ALP cogenesis Co, Hall and KH (2020)

Assuming the standard EW phase transition,

- 1. Angular velocity
- 2. Decay constant

1. Dark Matter

2. Baryon asymmetry

3. ALP mass

3 free parameters – 2 densities to fit = 1 free parameter

$$f_a = 2 \times 10^9 \text{ GeV} \left(\frac{1\mu\text{eV}}{m_a}\right)^{1/2}$$

Prediction on the ALP coupling

Lepto-axiogenesis

Majorana neutrino mass

Majorana neutrino masses break the lepton symmetry

Supersymmetry

 $\frac{\Delta n_B}{s} \simeq 10^{-11} \frac{\dot{\theta}}{10 \text{ TeV}} \frac{\sum m_{\nu}^2}{0.03 \text{ eV}^2}$

In supersymmetric models, $m_{\rm SUSY,scalar} \sim m_S \sim \dot{\theta} \sim 10 - 1000 \text{ TeV}$

Consistent with the Higgs mass

Supersymmetry

 $\frac{\Delta n_B}{s} \simeq 10^{-11} \frac{\dot{\theta}}{10 \text{ TeV}} \frac{\sum m_{\nu}^2}{0.03 \text{ eV}^2}$

In supersymmetric models, $m_{\text{SUSY,scalar}} \sim m_S \sim \dot{\theta} \sim 10 - 1000 \text{ TeV}$

Consistent with the without-singlets scenarios

Giudice, Luty, Murayama, Rattazzi (1998)

"Mini-split SUSY," "Spreads SUSY," "Pure-gravity mediation,"...

- gaugino masses are given by anomaly mediation, TeV
- no moduli problem from singlet SUSY breaking fields
- no gravitino problem

New perspective on SUSY scale

* Electroweak hierarchy $m_{SUSY} \sim 100 \text{ GeV}$

- * Gauge coupling unification $m_{SUSY} \lesssim 10^6 \text{ GeV}$
- * Lightest supersymmetric particle as DM $m_{SUSY} \lesssim 10^3 \text{ GeV}$ (invalid with RPV)
- * Baryogenesis from axion rotation and neutrino mass

$$m_{\rm SUSY} \simeq 10 - 100 {
m TeV}$$

RPV axiogenesis

Co, KH, Johnson and Pierce (2021)

 $\lambda, \mu', m_{\text{scalar}}, f_a$ are constrained by DM and baryon densities

possible signals: proton decay, decay of the lightest supersymmetric particle

Ex. SU(5) texture

Consider the case with dimensionless RPV with SU(5) relation

$$W = \frac{1}{2}\lambda_{ijk}10_i\bar{5}_k\bar{5}_k = \lambda_{ijk}(Q_i\bar{d}_jL_k + \frac{1}{2}\bar{u}_i\bar{d}_j\bar{d}_k + \frac{1}{2}\bar{e}_iL_jL_k)$$

To minimized the proton decay rate, $\lambda_{1jk} \sim \theta_{13}^{\text{CKM}} \lambda_{3jk}, \ \lambda_{2jk} \sim \theta_{23}^{\text{CKM}} \lambda_{3jk}$

Anarchical 5-plets : $\lambda_{i12} \sim \lambda_{i13} \sim \lambda_{i23}$ Hierarchical 5-plets : $\lambda_{i12}, \lambda_{i13} \ll \lambda_{i23}$

Axion Kination

Equation of state of rotations Co and KH (2019) $\dot{\theta} = \sqrt{V'(S)/S} \simeq m_S(S)$ $\dot{\theta}S^2 \propto R^{-3}$ SUSY If the potential of S is nearly quadratic, $\dot{\theta} = \text{const}, S^2 \propto R^{-3}$ $\rho = \dot{\theta}^2 S^2 \propto R^{-3}$ matter

Equation of state of rotations Co and KH (2019) $\dot{\theta} = \sqrt{V'(S)/S} \ll m_S$

 $\dot{\theta} \propto R^{-3}, S^2 = f_a^2$

 $\rho = \dot{\theta}^2 S^2 \propto R^{-6}$

Axion energy is dominantly from the kinetic term

 $\dot{\theta}S^2 \simeq \dot{\theta}f_a^2 \propto R^{-3}$

kination

Axion kination

radiation

rotation

matter domination

Co and KH (2019)

kination domination

matter domination ends WITHOUT entropy production

Effect on primordial gravitational waves

ex. inflationary gravitational waves

enhanced if the mode enters the horizon $(k \sim H)$ when the rotation dominates

Co, Dunsky, Fernandez, Ghalsasi, Hall, KH and Shelton (2021) Gouttenoire, Servant and Simakachorn (2021)

For the QCD axion, modification can occur at $f \gtrsim 0.01$ Hz (If kination lasts longer, dark matter is overproduced)

