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Light thermal DM is an attractive candidate, while its annihilation is 
severely limited by the CMB observation. A possible scenario of the 
DM accommodated with this limit is to have a velocity-dependent 
annihilation cross-section. Interestingly, such a candidate often 
predicts a velocity-dependent self-scattering cross-section, which 
enables us to solve the core-cusp (diversity) problem. Future MeV 
gamma-ray observations will be crucial in searching for such DMs.
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Thermal dark matter 
[H. Murayama, March 7, 2023]

Thermal DM = A dark matter candidate that experiences thermal  
equilibrium with SM particles in the early universe.

We focus on the light thermal DM, i.e., its mass is well below EW.
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With the averaged DM velocity <v>,
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<v> ～ 10 –3: Large enough for direction.

<v> ～ 10 –1: For relic abundance condition.
↓

Such a DM candidate often predicts a v-dependent self-scattering!

✔ EG1: Scalar DM + Scalar Med. ✔ EG12 s-channel resonance.

(p-wave ann.) (when mMed << mDM ) (Non-trivial velocity dependence)
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Parameter region?
✔ Relic abundance condition,

✔ CMB limits on <σv> & Neff.

✔ Self-scattering condition.

Indirect dark matter detection?
✔ COMPTEL(γ) & Voyager(e).

Future MeV-γ observation?

✔ COSI, AMEGO, GRAMS, GECCO, …



Summary

We discussed a light thermal DM focusing on the following 3 aspects. 

 The CMB constraint severely limits light thermal DM. Consistent 
with the freeze-out mechanism, a possible solution for satisfying 
the CMB limit is to have a velocity-dependent annihilation.
[Another solution is to use other processes for the freeze-out.]

 Light thermal DM with velocity-dependent annihilation also often 
predicts a velocity-dependent self-scattering, which may solve 
the diversity problem of the small-scale structure of the universe.
[Caveat: The diversity problem may be solved in another way.]

 Indirect DM detection at the MeV-g observation will play a crucial 
role in searching for a light thermal DM with velocity-dependent 
annihilation, which is expected to be well-developed in the future.
[Collider and direct DM detections are, of course, also important.]
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