MAGNETO-v: keV Sterile Neutrino Search in ²⁴¹Pu Beta Decays

Geon-Bo Kim

Lawrence Livermore National Laboratory

UCLA DM, UCLA, March 2023

Contact: kim90@llnl.gov

LLNL-PRES-846891 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MAGNETO: DM Search with Magnetic Quantum Sensors

Lawrence Livermore National Laboratory

THE OHIO STATE UNIVERSITY NATIONAL ACCELERATOR

ABORATORY

Fast (<1μs) and high energy resolution (~10 eV) magnetic sensors for **MAGNETO-v:** keV-neutrino search in ²⁴¹Pu beta decays **MAGNETO-χ:** Sub-GeV DM detection with phonon pulse shape discrimination

wrence Livermore National Laboratory LLNL-PRES-846891

Magnetic Quantum Sensors (Quantum Sensor 1.0)

- Fast response (~100 ns)
- High energy resolution (~10 eV)

- Smooth and linear response (M = 1/T)
- Broad and Flexible Energy range: 1eV 1GeV

MAGNETO-χ: Sub-GeV DM Detection with phonon PSD

See "Low energy excess in MAGNETO R&D Data" EXCESS workshop, 2022

- Phonon shape analysis for "EXCESS" events with 100 ns risetime
- Background reduction (NR/ER, thermal/athermal)
 - Almost any type of crystals can be used Crystal qualification program is ongoing for Diamonds (pCVD and scCVD), Sapphire, Si, Ge, etc.

MAGNETO-v: keV Neutrino Search with ²⁴¹Pu β-decays

High precision beta shape analysis via "Micro-calorimetry"

Experimental Motivation

- Ideal for 1 20 keV neutrino (DM) search
- Complementary to ³H experiments
- "On-shelf" available and "Easy" handling source
- Cost-effective experiment

	²⁴¹ Pu	³ Н
Q-value	20.8(2) keV	18.5752(5) keV
Half-life	14.329(29) y	12.32(2) y
Decay mode	First forbidden β (99.99756(2)%) α (0.00247%)	Superallowed β (100%)

Detector: 4π Microcalorimetry

Lawrence Livermore National Laboratory

²⁴¹Pu Source

Activity Ratios of Pu Sources

	Stage	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
CRM137A	Phase-0	6.3%	8.7%	7.7%	77.2%	0.009%
Enriched ²⁴¹ Pu	Phase1,2	1.366E-2%	3.453E-3%	4.829E-2%	99.93%	5.267E-4%

Proof-of-concept Experiment

3000 Preliminary setup with "External" coupling of detector **Experimental Data** Fit 2500 2000 Counts 24 hours, 4 Bq, 1 pixel 1500 0.3M events collected 1000 Consistent with 500 calculation Gold foil with embedded Magnetic sensor device 241Pu source (KRISS, South Korea) 15 20 25 10 30 Energy [keV]

Basic idea works!

Next: Increase statistics, Understand systematics and background

Toward Phase-1

Background

• Timing resolution has been improved to 5 us.

Systematic Uncertainties

Theoretical

- Screening and exchange effects
- Radiative corrections
- Overlap correction

Experimental

- Trigger efficiency
- Event selection efficiency
- Random coincidence

MAGNETO Sensitivity

Summary

- Cost-effective experiment for keV neutrino search
- Complementary to Tritium experiments (Tristan, KATRIN)
- Phase-1 run in 2024, approaching $|U_{e4}|^2 \sim 10^{-4}$ at 1 keV < m₄ < 20 keV range.

Challenges

- Uncertainties on theoretical beta shape
- Accurate energy calibration

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.