

## Superconducting Nanowire Single Photon Detectors

#### Matt Shaw Jet Propulsion Laboratory

31 March 2023 UCLA Dark Matter Workshop



© 2023 California Institute of Technology. All rights reserved. Government sponsorship acknowledged.

# **JPL SNSPD Development Team**

#### **JPL Staff Researchers**





Matt Shaw **Postdocs** 

Emma Wollman



Boris Korzh



Andrew Beyer



**Bruce Bumble** 





Ryan Briggs





Ioana Craiciu Gregor Taylor Fiona Fleming Graduate Students (Heriot-Watt)



Dan Shanks Emanuel Knehr



**Key Collaborators** 















Andrew Mueller (Caltech APh)



Jamie Luskin (Maryland)



Sahil Patel (Caltech MS)



Sasha Sypkens (Arizona State)

















JPL



# **Superconducting Nanowire Single Photon Detectors**



# **Present State of The Art in SNSPDs**



#### UV – Mid-IR Operation

Photon counting from 0.1 - 18 µm (JPL/MIT/NIST)



#### High Time Resolution 2.6 ps FWHM (MIT/JPL/NIST)





Korzh et al, Nature Photonics (2020)

0.20 0.25

### Low Dark Counts

6e-6 cps (MIT/NIST)

Chiles et al, Phys. Rev. Lett. (2022)





#### **Kilopixel Array Formats**

32x32 "row-column" / thermally coupled imager (NIST/JPL)





NIST

11117

JPL

# High Event RateWollman et1.4 Gcps in 32-element array (JPL)

Wollman et al, *Optics Express* (2019) MacCaughan et al, *APL* (2022)

Craiciu et al, *Optica* (2023)



## **Technology Development Needs for Dark Matter**

#### Active Area

- Currently ~mm<sup>2</sup> area
- Targeting cm<sup>2</sup> area and beyond
- Fab process development and readout

#### **Dark Counts**

- Currently at <10<sup>-5</sup> cps at 1550 nm
- Physical origin of dark counts is not well understood
- Limits are not well understood as energy threshold decreases

#### **Energy Threshold**

- Currently at 18 µm (70 meV)
- Likely possible to reach 30 µm (40 meV) and possibly lower
- Exploring strategies to efficiently couple (antennas, dielectric stacks, photonics)

#### UV Operation

- Characterization and optimization of SNSPDs at VUV energies
- Currently preparing cryostat for SNSPD measurements at NIST SURF synchrotron (3 – 300 eV photons, ~1 ns pulses)

# **SNSPD** Applications

#### Free-Space Optical Communication

- Deep Space Optical Communication (Psyche)
- Optical-to-Orion
- Lunar Laser Comm Demo
- Space-to-Ground Quantum Communication



#### Quantum Information Science

- Quantum
  Communication
- Trapped Ion
  Quantum Computing
- Linear Optical
  Quantum Computing



#### Fundamental Physics

- Dark Matter searches (Dielectric Haloscopes, scintillator readout)
- Tabletop tests of quantum gravity
- Infrared Astronomy



# Large Area SNSPDs for Dark Matter

- Currently fabricating mm<sup>2</sup> and cm<sup>2</sup> SNSPD arrays
- Micron-wide wires enable larger area with photolithography
- Investigating multiple approaches to multiplexing many pixels
- Frequency-domain, thermal coupling, row-column readouts, SFQ





# **Strategies for Reduced Energy Threshold**

#### Reduced Superconducting Gap Energy

- Now using Si-rich WSi to reduce Tc to 1.3-2.1 K (depending on thickness)
- "Conventional" WSi for NIR devices has Tc = 3.1 – 3.6 K



#### Narrow Nanowires

- Narrower nanowires enhance IR sensitivity by constraining hotspot growth
- Reliably fabricating SNSPDs with 50-60 nm wires using electron-beam lithography



JPL

Tradeoffs: Lower operating temperature (< 1 K) and smaller readout currents (< 2 uA)

# Saturated Internal Efficiency up to 18 µm (70 meV)



Devices have 100% *internal* efficiency, but need to be optimized for efficient coupling at these wavelengths

NIST

JIPI

# **Approach to Efficient Coupling: Optical Stacks**

- Optical stack approach has proven very effective in the NIR (98% system detection efficiency observed at NIST)
- SNSPDs do not face the same restrictions on amorphous dielectrics as KIDs (TLS noise)
- Conventional materials will work to ~7 μm
- Adapting the approach for wavelengths as long as 18 µm requires careful selection of dielectric materials
- Investigating Ge, a-Si, c-Si, BaF<sub>2</sub>, CdTe/PbSe as low-loss candidates at long wavelengths



NIST

l'liī

JPL

# **Approach to Efficient Coupling: Dipole Antennas**

- For long wavelengths, resonant dipole antenna coupling is a good approach to reach high efficiencies
- Reduces active area of nanowire compared to direct absorption
- Currently investigating antenna designs in collaboration with MIT (Dip Joti Paul / Karl Berggren) and JPL (Sven van Berkel)
- Still requires good dielectrics in longwave infrared
- Dual-polarization designs are possible



## **Frequency Domain Multiplexing of SNSPDs**

- Current from SNSPD is shunted to a superconducting microwave resonator instead of an amplifier
- Thousands of resonators can be read out on one RF feedline
- Most bandwidth-efficient way to make use of the readout lines in the cryostat
- Exceptional (<< 1 uA) current sensitivity compared to conventional amplifiers, critical for mid-IR devices
- DC bias provides a degree of reconfigurability
- Leverages decades of development from microwave kinetic inductance detectors and superconducting qubit readouts



# Preliminary results with frequency multiplexing

- Interfaced SNSPD array with KPUP chip containing 40 resonators on one feedline
- Successfully read out SNSPD pulse and demonstrated DC frequency shifting necessary for reconfigurable readout

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_4.jpeg)

40 microwave resonators on one feedline

![](_page_12_Figure_6.jpeg)

Demonstration of resonator shift with DC bias

# **Next Steps for SNSPD Development for Dark Matter**

- Scaling active area to cm<sup>2</sup> and beyond
- Reducing energy threshold toward fundamental limits (20 meV?)
- Engineering high optical coupling efficiency for far-infrared photons
- Developing frequency-domain readout to scale to large arrays of low-threshold SNSPDs
- Understanding and mitigation of low-energy backgrounds

![](_page_14_Picture_0.jpeg)

# Thanks for your attention!

## mattshaw@jpl.nasa.gov

![](_page_14_Picture_3.jpeg)