Phonon-mediated kinetic inductance detectors for sub-GeV dark matter searches

Speaker: Osmond Wen¹ Co-authors: Taylor Aralis¹, Ritoban Basu Thakur^{1,2}, Bruce Bumble², Yen-Yung Chang¹, Noah Kurinsky³, Karthik Ramanathan¹, Brandon Sandoval¹, Dylan Temples⁴, Sunil Golwala¹

UCLA Dark Matter 2023

image credit: SuperCDMS collaboration

Motivation: sub-GeV NRDM searches

- How can we use phonon-mediated detectors to probe unexplored parameter space?
 - sub-eV_t resolutions for better mass reach
 - see talks by Rouven Essig and Tongyan Lin for further context
 - ER-rejection to enable neutrino-limited searches
 - attainable with a pixelized & multiplexed phonon readout to separately measure primary phonons and phonons produced by charge drift: "piZIP" (M. Pyle)

Kinetic inductance detectors (KIDs)

- superconducting microwave resonator
 - phonons in substrate \rightarrow broken Cooper pairs \rightarrow shifted resonance and RF transmission
 - two quadrature readout of RF transmission: dissipation and frequency
 - key advantage: natively multiplexable, i.e. simultaneous readout of many resonators coupled to one feedline

An initial prototype: position and energy resolution

- 1-gram silicon substrate
 20 aluminum resonators
- $\lesssim 1$ mm position resolution

	energy performance						
σ_l	E	baseline resolution on energy deposited in the substrate	380eV				
η_p	h	phonon collection efficiency	7%				
$\sigma_{E,c}$	abs	baseline resolution on energy absorbed by a single resonator; "intrinsic energy resolution"	6eV				
	$\sigma_E = \frac{\sqrt{N_r}}{\eta_{ph}} \sigma_{E,abs}$						

- Can we decrease the number of resonators while keeping the phonon collection efficiency high?
- What are the challenges to increasing multiplexability?

slide credit: Moore 2012, https://arxiv.org/abs/1203.4549

Two goals \rightarrow two new architectures

- Goal 1: optimizing for energy resolution with a small device
 - decrease N_r from prototype design: 1-gram, 1-resonator
 - replaced "dead metal" with a higher-gap material
 - feedline
 - capacitor
 - calibration resonators

green: aluminum red: higher-gap materials

- Goal 2: creating a large volume device with massive multiplexability
 - scale size up and keep surface area coverage constant: 9-gram, 80-resonators
 - reduced mounting area relative to "live metal" area

^{7.5}cm

Fabrication done (by grad students!) at JPL in the Microdevices Lab using photolithography techniques

Recent results: building a model for η_{ph}

calibrated small device at Fermilab using optical photons (Dylan Temples poster)

- Why is the phonon collection efficiency so poor? What are the dominant loss mechanisms?
 - down-conversions in the high-gap materials
 - recent simulations: these materials are more down converting than expected
 - mounting
 - surface-mediated down-conversions (fill fraction 2% in prototype \rightarrow 0.1% now)

Recent results: identifying drivers of $\sigma_{E,abs}$

- large device showed hugely varying transmission and resonator quality factors
 - hypothesis: RF excitations of the physical box and poor grounding of the CPW feedline

Recent results: the TLS wall

- Two-level systems (TLS) are present in surface oxides and contribute noise in the capacitor ٠
 - TLS cause fluctuating epsilon, leading to dissipation and thus noise (F-D theorem)

We have seen some amount of TLS noise in all our detectors, regardless of capacitor metal choice

Recent results: nearing quantum-limited amplification

- dissipation quadrature is still amplifier-noise-limited: $\sigma_{E,abs} \propto \sqrt{T_{amp}}$
 - currently using high-electron-mobility transistor (HEMT) amplifiers
 - T_{amp} between 3-5K
 - standard quantum limit (SQL) is given by $T_{amp} = hv \sim 200$ mK at our readout frequencies
 - 4-5x improvement in rms
 - achievable with new QIS-based technologies: JPA, J-TWPA, KI-TWPA
- noise improvement seen with KI-TWPA
 - shown basic KID+TWPA compatibility \rightarrow still need to optimize TWPA performance

Summary & outlook

• Goal 1: optimizing for energy resolution

	σ _{E,abs} (freq.)	σ _{E,abs} (diss.)	<i>σ_E</i> η _{nh} = 0.8%	<i>σ_E</i> η _{nh} = 30% -	literature value
current performance	2.5eV	7.5eV	316eV	8.3eV*	Open questions:
improve RF behavior	TLS wall	580meV*	73eV*	1.9eV*	the TLS wall?
SQL amplifier		138meV*	17eV*	460meV*	When will we hit
lower gap material		70meV*	8.5eV*	230meV*	GR noise?

*projection

- Goal 2: demonstrate multiplexability for desired ER-rejection
 - 20-resonator phonon readout multiplexing has been achieved
 → need to improve RF engineering for larger feedline devices

10

Background: piZIP

• nuclear recoils and electron recoils will have different ratios of primary phonons and phonons produced by charge drift

Background: pulse shapes in time

• In the prototype device, we observed a prompt Cooper pair time constant around 12ueV and a delayed phonon time constant around 50us

