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Motivation: sub-GeV NRDM searches

* How can we use phonon-mediated detectors to probe unexplored parameter space?
* sub-eV, resolutions for better mass reach
* see talks by Rouven Essig and Tongyan Lin for further context
* ER-rejection to enable neutrino-limited searches

» attainable with a pixelized & multiplexed phonon readout to separately measure
primary phonons and phonons produced by charge drift: “piZIP” (M. Pyle)
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Kinetic inductance detectors (KIDs)

e superconducting microwave resonator
* phonons in substrate = broken Cooper pairs = shifted resonance and RF transmission
* two quadrature readout of RF transmission: dissipation and frequency
* key advantage: natively multiplexable, i.e. simultaneous readout of many resonators
coupled to one feedline

feedline

Main sources of noise

type of noise affected source/description of

quadrature noise

amplifier white | both thermal noise from the
noise cryogenic amplifier
(typically at 4K)
two level only loss from surface defects,
. systems frequency e.g. metal oxides
c
RSl
a generation- both poissonian noise of
é steady L — recombination Cooper pairs breaking
= T state dissipation (fundamental) and then recombining
- during
>z ~ phonons
frequency

KIDs offer a path to sub-eV resolutions while also
being natively multiplexable
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An initial prototype: position and energy resolution

1-gram silicon substrate

20 aluminum resonators

< 1mm position resolution

(@)

° energy performance =

baseline resolution on energy

“intrinsic energy resolution”

Og deposited in the substrate 380eV
phonon collection efficiency o
Mph 7%
baseline resolution on energy
Og aps | absorbed by a single resonator; 6eV

/N,

ph

O = OE,abs

e (Can we decrease the number of resonators
while keeping the phonon collection
efficiency high?

* What are the challenges to increasing

multiplexability?
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https://arxiv.org/abs/1203.4549

Two goals = two new architectures

* Goal 1: optimizing for energy resolution * Goal 2: creating a large volume device

with a small device with massive multiplexability

* decrease N, from prototype design: * scale size up and keep surface area
1-gram, 1-resonator coverage constant:

* replaced “dead metal” with a 9-gram, 80-resonators

higher-gap material * reduced mounting area relative to

e feedline “live metal” area
* capacitor

e calibration resonators

A
v

green: aluminum

red: higher-gap materials 7.5Ccm

Fabrication done (by grad students!) at JPL in the Microdevices Lab

using photolithography techniques
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Recent results: building a model for n,,

» calibrated small device at Fermilab using optical photons (Dylan Temples poster)
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* Why is the phonon collection efficiency so poor? What are the dominant loss mechanisms?
e down-conversions in the high-gap materials

recent simulations: these materials are more down converting than expected
* mounting

 surface-mediated down-conversions (fill fraction 2% in prototype = 0.1% now)

high-gap material detector high-gap material

silicon

mounting mounting
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Recent results: identitying drivers of 0g gps

large device showed hugely varying transmission and resonator quality factors
* hypothesis: RF excitations of the physical box and poor grounding of the CPW feedline
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Recent results: the TLS wall

e Two-level systems (TLS) are present in surface oxides and contribute noise in the capacitor
e TLS cause fluctuating epsilon, leading to dissipation and thus noise (F-D theorem)
* only affects frequency quadrature
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* We have seen some amount of TLS noise in all our detectors, regardless of capacitor metal choice
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Recent results: nearing quantum-limited amplification

* dissipation quadrature is still amplifier-noise-limited: og 4ps < /Tamp
« currently using high-electron-mobility transistor (HEMT) amplifiers
Tamp between 3-5K
* standard quantum limit (SQL) is given by Ty, = hv ~ 200mK at our readout frequencies

* 4-5x improvement in rms
* achievable with new QIS-based technologies: JPA, J-TWPA, KI-TWPA

* noise improvement seen with KI-TWPA
* shown basic KID+TWPA compatibility = still need to optimize TWPA performance

idealized transmission

/\ KIPA off

6.011+0.05

x4.2 improvement
in rms!

v

= KIPA on

publication in process!
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Summary & outlook
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* Goal 1: optimizing for energy resolution

literature value

Npn =0.8% 1,,=30%

current performance 2.5eV 7.5eV 316eV 8.3eV* SR IO RESHaRE
Can we get around
improve RF behavior TLS wall 580meV* 73eV* 1.9eV* the TLS wall?
SQL amplifier * * *
Q p l 138meV 17eV 460meV When will we hit
lower gap material 70meV* 8.5eV* 230meV* GR noise?

*projection

* Goal 2: demonstrate multiplexability for desired ER-rejection

e 20-resonator phonon readout multiplexing has been achieved

- need to improve RF engineering for larger feedline devices )
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Background: piZIP

* nuclear recoils and electron recoils will have different ratios of primary phonons and
phonons produced by charge drift

Radius

slide credit: Matt Pyle
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Background: pulse shapes in time

* In the prototype device, we observed a prompt Cooper pair time constant around 12ueV
and a delayed phonon time constant around 50us
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