Recent Progress and Plan of PandaX Experiment

Ning Zhou Shanghai Jiao Tong University UCLA Dark Matter 2023 2023.03.31

@starregistration.net

PandaX Collaboration

• Particle and Astrophysical Xenon Experiment

China Jinping Underground Laboratory

- **Deepest underground lab:** 6700 m.w.e. and horizontal access
- CJPL-II: 8 experiment halls (14m x 14m x 60m)

PandaX-4T experiment @ CJPL-II

- Sensitive target volume: 3.7 tonne liquid xenon
- Shielding tank: 900m³ high-purity water

Commissioning run in 2021

- Dec 2020 Apr 2021: 0.63 tonne-year exposure
 - Limits on WIMP-nucleon spin-independent xsec down to 3.8×10^{-47} cm²
- Approaching the "solar neutrino floor"

Y. Meng et al. PRL 127, 261802 (2021)

Community progress and success: LZ, arXiv:2207.03764 XENONnT, arXiv:2303.14729

Towards the neutrino floor

- Lowering selection threshold for solar B8 CEvNS
 - Cut on the scintillation signal (S1) from 2 PE to 0.3 PE
 - Optimizing signal selection cuts with waveform simulation
- Accidental paired (AC) background modeling and rejection

Constraints on B8 and WIMP

- Blind analysis with 0.48 tonne-year data
 - Some downward fluctuation

RUI (BDT applied)						
ER+NR+AC	8B	Total prediction	Unblind data			
1.46	1.42	2.88				
0.04	0.29	0.33	0			

DOI (DDT applied)

- Leading constraint on B8 neutrino flux through CEvNS
- Strongest constraints on light WIMP of mass 3 -10 GeV/c²

Towards light dark matter

• Several approaches

	Low threshold	PRL 126, 211803 (2021) arXiv:2212.10067
	Mass – Energy	PRL 129, 161803 (2022) PRL 129, 161804 (2022)
坡度30度	Kinetic boosting	PRL 126, 091804 (2021) PRL 128, 171801 (2022) arXiv:2301.03010

Ionization-only search

- Abandon the scintillation signal cut
 - ROI: S2 [60, 200]PE
 - Threshold down to ~100 eV (from ~1 keV)
 - Tight quality cuts on the ionization signal
- Background components
 - Micro-discharging (MD)
 - > Small charge, strong run-condition dependence
 - Cathode activity

Large charge, large pulse-shape width

Data-driven estimation

Validated in control region

Constraints on light dark matter

- Blind analysis of 0.55 tonne-year exposure
- Most stringent constraints are derived
 - DM-electron interaction, 2×10^{-41} cm²

χ–ν conversion

- DM and neutrino may have a connection
 - Behave similarly as a heavy neutrino
- DM interaction with atom
 - DM converts into a neutrino
 - DM mass gives large recoil energy

Mono-energetic recoil energy

$$-E_R \simeq \frac{m_\chi^2}{2M_T}$$

J. Dror, G. Elor, R. McGehee, PRL (2020)

Mono-energetic signal search

• NR channel:

L. Gu et al. PRL 129, 161803 (2022)

- Energy reconstruction validated with neutron calibration
- Strong constraints on 30-125 MeV mass
 - SI xsec reaching 10⁻⁵⁰ cm², better than collider search
- ER channel:

- D. Zhang et al. PRL 129, 161804 (2022)
- Similar signature as sterile neutrino
- Fine scanning of 10-180 keV mass
 - Combination with constraints from cosmology, DM relic density and x-ray

Boosted dark matter

- η mesons from cosmic-ray beam dump in atmosphere may decay into DMs
 - Hadrophilic scalar mediator

 $\succ L \supset -g_{\chi}S\bar{\chi}_L\chi_R - g_uS\bar{u}_Lu_R + h.c.$

 \succ Free parameters: $g_{\chi}, g_u, m_S, m_{\chi}$

- $BR(\eta \to \pi^0 S \to \pi^0 \chi \bar{\chi})$: no dedicated measurements on this semi-invisible yet
- Strongly boosted atmospheric dark
 matter

Constraints on the DM-nucleon

Earth attenuation

- Elastic coherent, quasi-elastic (QE), and inelastic scatterings
- For $T_{\chi} > 0.2$ GeV, QE becomes significant
- Dedicated QE scattering calculation with light mediator
- Cosmic-ray beam dump gives a unique window to search this scalar mediated DM-nucleon interaction
 - Same model could be searched in beam experiments, like MinibooNE and E787/E949

X. Ning et al. arXiv:2301.03010

Multi-physics targets

¹³⁶Xe 2vDBD half-life measurement

- Energy window [440, 2800] keV
 - PMT desaturation algorithm
 - Multi-site vs single-site discrimination
- Robust estimation of backgrounds
 - Simultaneous fit in 4 regions

¹³⁶Xe 2vDBD half-life measurement

- First result derived from natural xenon experiment
 - 2.27 +/- 0.03 (stat) +/- 0.10 (syst) x 10²¹ years
 - One of the most precise measurements to date
 - Comparable with enriched ¹³⁶Xe experiments

Research Vol 2022, 9798721 (2022)

After commissioning

- Tritium identified in commissioning data
- Offline xenon distillation
- 1st physics run (Run1)
 - Data still under blind analysis
- CJPL-II B2 hall construction
- Detector upgrade

Tritium removal

- Preliminary estimation of tritium level
 - Fitting S1 spectrum, keeping S2 blinded
- Extensive tritium measures planned for next run (Run 2)

Period	Run0 Set 4	Run0 Set 5	Run1
Tritium Counts/day/tonne	3.0 ± 0.3	1.6 ± 0.2	0.4 ± 0.1

Future plan: PandaX-xT

• "Ultimate" liquid xenon experiment

- With >30 tonne sensitive volume
- Letter-of-interest sent to Chinese funding agency
- Decisive test on WIMP and key test on Dirac/Majorana neutrino

Summary

- PandaX-4T is one of the new generation multi-tonne xenon experiments
- Intense searches for various types of physics, including DMs and neutrinos
- Expecting more interesting results from PandaX
- Highly welcome new collaborators!

Thank You!

Any question about this talk, please email nzhou@sjtu.edu.cn