SEARCHING FOR AXIONS WITH METAMATERIALS THE ALPHA HALOSCOPE

A. Gallo Rosso and ALPHA Consortium UCLA Dark Matter 2023

AXION-PHOTON COUPLING

¹O' Hare, cajohare/AxionLimits:AxionLimits.

Metamaterials

Composite materials with different properties than their single parts

²M. Lawson *et al.*, PRL 123 (2019) 14, 141802.

³P.A. Belov *et al.*, J. Electromagn. Waves. Appl. 16, 8 (2002).

TM₁₁₀ mode structure

Behavior as an effective medium Field distortion near wires might complicate readout

⁴A. Millar *et al.*, PRD 107 (2023) 5, 055013.

PROs

- Cryogenic
- Solenoidal magnet
- Much larger volume than cavities

CONs

Behind on R&D

⁴A. Millar *et al.*, PRD 107 (2023) 5, 055013.

 E/E_{max}

1.0

AXION LONGITUDINAL PLASMA HALOSCOPE

Searching for dark matter with plasma haloscopes

Alexander J. Millar^{1,2,3,*} Steven M. Anlage,⁴ Rustam Balafendiev,⁵ Pavel Belov,⁶ Karl van Bibber,⁷ Jan Conrad,¹ Marcel Demarteau,⁸ Alexander Droster,⁷ Katherine Dunne,¹ Andrea Gallo Rosso,¹ Jon E. Gudmundsson,^{1,5} Heather Jackson,⁷ Gagandeep Kaur,^{9,1} Tove Klaesson,¹ Nolan Kowitt,⁷ Matthew Lawson,^{1,2} Alexander Leder,⁷ Akira Miyazaki,¹⁰ Sid Morampudi,¹¹ Hiranya V. Peiris,^{1,12} Henrik S. Røising,¹³ Gaganpreet Singh,¹ Dajie Sun,⁷ Jacob H. Thomas,¹⁴ Frank Wilczek,^{1,11,15,16} Stafford Withington,¹⁷ Mackenzie Wooten,⁷

(Endorsers)

Jens Dilling,⁸ Michael Febbraro,⁸ Stefan Knirck,³ and Claire Marvinney⁸

Arizona State University	Niels Bohr Institute	UC Davis
Fermilab	Nordita, KTH Stockholm	UCL London
IIT Chicago	Oak Ridge National Labs	University of Iceland
IIT Kanpur	Shanghai Jiao Tong University	University of Maryland
MIT Cambridge	Stockholm University & OKC	University of Oxford
Narxoz University	UC Berkeley	Uppsala University

POWER IN THE DETECTOR

Quality factor *Q* System dampening

$$Q = \frac{\omega \mathcal{U}}{P_{\text{loss}}} = \frac{\omega}{c \, \Gamma_p}$$

$$P_s = \left(\frac{\rho_a}{m_a}g_{a\gamma}^2\right)\kappa B_e^2 Q \mathcal{G} V$$

Geometry factor *G* Normalization of stored energy

$$\mathcal{G} = \frac{1}{a_0^2 g_{a\gamma}^2 B_e^2 V Q^2} \int |\mathbf{E}|^2 \,\mathrm{d}V$$

Volume V

GEOMETRY FACTOR

For single-mode systems

$$\mathcal{G} = \mathcal{C} = rac{1}{\overline{B}_e^2 V^2} \left(\int B_e \mathcal{E}_i \,\mathrm{d}V
ight)^2$$

For multi-mode systems

SINGLE CAVITY MODE BREAKS DOWN MORE THAN ONE ANTENNA NEEDED

⁴A. Millar *et al.*, PRD 107 (2023) 5, 055013.

QUALITY FACTOR

- Tightly bound to design $\hookrightarrow Q = Q(\omega_p) = Q(\omega_p(r))$ \hookrightarrow Theory \checkmark Simulation \checkmark Experiment
- *Q* ~ some 1000s
 - $\,\,\hookrightarrow\,\, imes 10$ than previously quoted
 - $\hookrightarrow \times 3$ more if cryogenic
- Wire losses > surface
 - \hookrightarrow Asymptotically $P_s \propto V$

⁵R. Balafendiev *et al.*, PRB 106, 075106 (2022).

STOCKHOLM UNIVERSITY

⁵R. Balafendiev *et al.*, PRB 106, 075106 (2022).

UC BERKELEY

⁶M. Wooten *et al.*, Annalen der Physik (2022) 00479.

TUNING

⁴A. Millar *et al.*, PRD 107 (2023) 5, 055013.

UC BERKELEY

- Smaller freq. range
- More practical
- Few % agreement

⁷Data: N. Kowitt, Simulation: R. Balafendiev (see poster).

DISCOVERY REACH

ALPHA PHASE I

- 2 years run
- (5÷40) GHz
- HEMT amplifiers
- Single scan (see [8])

ALPHA PHASE II

- 2 years run
- (5÷45) GHz
- Quantum limited
- Single scan (see [8])

 $(Q\sim 10^4,\,B\sim 10\,{\rm T},\,V\approx 0.3\,{\rm m}^3)$

⁸A. Gallo Rosso *et al.*, arXiv:2210.16095.

CONCLUSIONS

- Overall design validation
 - Theory/simulation/experiment
 - ✓ Feasible tuning
- Pathfinder on the way
 - ✓ First data in 2026
- KSVZ and DFSZ at reach
 - ✓ 2+2 yrs full scale experiment

and rea.gallo.rosso @fysik.su.se

