Early Cluster Formation through SIGOs

William Lake

Collaborators: Smadar Naoz, Claire Williams, Yeou Chiou, Blakesley Burkhart, Federico Marinacci, Mark Vogelsberger, Naoki Yoshida, Yurina Nakazato, and Gen Chiaki

The Supersonic Project

Structure formation

William Lake – UCLA

Naoz & Narayan 2014

The Stream Velocity

- Varies spatially and temporally
- Roughly constant on few-Mpc scales
- Exists in ACDM but is reduced in some dark matter theories (eg DM-Baryon interactions)

Tseliakhovich & Hirata (2010), Driskell et al. (2022), Figure credit Fialkov et al. (2013)

Structure formation

William Lake – UCLA

Naoz & Narayan 2014

What is a SIGO?

Supersonically Induced Gas Object

- Contains relatively little dark matter
- Masses at formation up to a few $imes 10^6 M_{\odot}$
- Natural consequence of theories of dark matter that include a significant stream velocity at early times

Figure: Lake et al. (2022).

Naoz & Narayan 2014, Popa et al. 2016, **Lake** et al. 2021

SIGOs as Globular Cluster Progenitors

GCs also contain relatively little DM

SIGOs form in similar abundance to low-metallicity GCs

Naoz & Narayan 2014, Heggie & Hut 1996, Bradford et al. 2011, Portegies Zwart & McMillan 2000, O'Leary et al. 2006, Rodriguez et al. 2015, 2016, 2021, Chaterjee et al. 2017, Chiou et al. 2019, **Lake** et al. 2021

SIGOs occupy a distinctive region in size-visual magnitude space. Chiou et al. (2019) using a Schaerer (2003) starburst model.

How Do SIGOs Evolve?

- Gravitational Collapse
 - SIGOs can collapse on themselves gravitationally, forming stars
 - This requires the SIGOs to exceed the Jeans mass
- Cooling
 - SIGOs can cool, mostly through molecular hydrogen cooling
 - This lowers their temperature and Jeans mass
- Fall-back
 - SIGOs can fall back into their parent DM halos, becoming substructure within the halo
- Growth
 - SIGOs can accrete surrounding material and grow

How do these Timescales Compare?

An evolutionary track of a SIGO (left, stars) merging with its parent halo (right). Lake et al. (2022)

SIGO Growth

• SIGOs can accrete surrounding material

• This allows their masses and gas fractions to change

SIGO Growth

 $\label{eq:constraint} \begin{array}{l} \mbox{The formation and growth of a SIGO from $10^{4.8}$ M}_{\odot}$ (z=24) to $10^{5.6}$ M}_{\odot}$ (z=20)$ (Lake et al. 2022)$ \\ \end{array}$

Cooling and Collapse in SIGOs

A SIGO that has reached the Jeans density in a simulation with molecular cooling. From Nakazato,..., Lake, et al. (2022).

Star Cluster Formation Movie

The formation and star cluster formation of a $10^{5.5}$ M $_{\odot}$ SIGO between z=20 and William Lake – UCLA z=15. (Lake et al. in prep)

SIGO Star Cluster Formation

A SIGO undergoing star formation at z=15 (red, left) and a zoomed in view of the star formation region (right). Preliminary results.

SIGO Star Cluster Formation

Summary

• SIGOs arise as a natural consequence of ΛCDM

• Some SIGOs form stars without dark matter, potentially permitting detection

• This is not a given, the SIGO must be massive enough to collapse

 Detection of SIGOs at early times may provide constraints on theories that include a reduced stream velocity

Questions?

Molecular Hydrogen Cooling

Without molecular hydrogen cooling William Lake – UCLA (Lake et al. 2022) With molecular hydrogen cooling (Lake et al. 2022)

molecular hydrogen cooling. Lake et al. (2022)

The Abundance of SIGOs Varies Spatially

William Lake – UCLA

The spatial variation in SIGO abundances. Lake et al. (2021)

SIGOs Follow a Power-Law Mass Function

- SIGOs follow a power-law mass distribution in simulations
- This mass distribution resembles the empirically determined mass distributions of GMCs (spectral index of -2.1 in the outer Milky Way, -2.9 in M33)

Rosolowsky 2005, Lake et al. 2022

The mass spectrum of SIGOs follows a power-law PDF with spectral index -2.45. Lake et al. (2022).

The Sonic Scale

• Scale at which 1d velocity dispersions are Mach 1

•
$$\lambda_S = \frac{L_{drive}}{\mathcal{M}^2}$$

The Gravitational Wave Background at High z could Vary Spatially with the Stream Velocity

Map of integrated SIGO abundances. Lake et al. (2021)

The Turbulent Energy Inside SIGOs

The Mach number dispersion within SIGOs. Lake et al. (2022).

SIGOs Form in a Turbulent Environment

