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Background: Dark matter phenomenology

Lovell+2014
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Lovell+2014

Self-interacting DM
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Background: Fuzzy dark matter
● Fuzzy dark matter (FDM) is a class of ultra-light DM that exhibits a ~kpc-scale de Broglie wavelength

(originally motivated by the mass of the QCD axion, but also may explain sub-galaxy-scale phenomena better than CDM)
● Main observable phenomena:

● Suppressed halo mass function at low masses (Nadler+2021, Banik+2022, Laroche+2022)
● Cored density profiles (most apparent in dwarf galaxies: Chen+2017, Safarzadeh+2020, Hayashi+2021)
● “Granules” due to wave interference (This work, Marsh+2019, Laroche+2022)

Schive+2014



  

Background: angular resolution

Vegetti (MICADO simulator, 
3 hours on-source)

HST (real data)
~109 Msun

Keck AO (real data)
~108 Msun

E-ELT (mock data)
~107-106 Msun

VLBI (real data)
~106 Msun

McKean

● The sensitivity of a gravitational lens observation to low-
mass dark structures is mainly determined by angular 
resolution.



  

Background: Radio interferometry
● Array of radio antennas samples Fourier modes of the sky brightness
● Each pair of antennas measures a “visibility” corresponding to one Fourier component
● The response of the instrument is a Fourier transform (D in the schematic below)
● Distance between antennas and observing wavelength determines angular resolution ~λ/d

ALMA (ESO/NRAO/NAOJ), L. Calada (ESO), Y. Hezaveh et al.



  

Background: Gravitational lensing with VLBI
● We use global very long baseline interferometry (VLBI)
● Earth-scale antenna spacings give ~5 mas resolution at 1.6 GHz.
● Long, thin arcs are extremely sensitive to perturbations by low-mass dark structures in the lens!

Spingola+2018

MG J0751+2716
Einstein radius is ~0.4 arcsec



  

Method: Forward modeling with VLBI data
● Forward modeling: Recover a pixellated source brightness model, as well as a likelihood, for a given lens model:

Allow us to quantify how well a given lens mass distribution explains the observed data.
● I developed a tractable method for forward-modeling milli-arcsecond-resolution VLBI lens observations 

(Powell+2021). 
● The first application to data was a global VLBI observation of the lensed radio jet MG J0751+2716 

(Powell+2022, see below)
● A smooth parametric lens model describes the data surprisingly well. This will be our baseline model for the 

FDM inference

DATA



  

Method: Generating fuzzy lenses

● Chan+2020 analytically describes the density statistics of virialized wave dark matter in a potential well.
● The variance of the projected surface density fluctuations is a function of the dark matter density profile 

and the de Broglie wavelength:

● The (reduced) de Broglie wavelength is:  
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Method: Inference on FDM lens models

1) For a single fuzzy lens realization, we compute the likelihood Pi( d | mχ, fDM, σv, η, λs ), where:
● d are the data (interferometric visibilities)
● mχ is the DM particle mass
● FDM is the dark matter fraction in the lens
● σv is the velocity dispersion of the dark matter (a proxy for the depth of the potential well)
● η are the smooth lens model parameters
● λs is a hyper-parameter that controls the source regularization strength.
● The subscript i denotes that this likelihood is one of an infinite number of random fuzzy DM realizations
 that are possible given these parameters. 



  

Method: Inference on FDM lens models

2) We generate ~40k fuzzy lens realizations, with parameters drawn from the following priors: 

3) We accept a sample if its likelihood Pi is above the 3σ contours of the baseline smooth model.
● i.e., for a FDM lens realization to be accepted, it must explain the data at least as well as the worst 0.3%

of the smooth model posterior samples.
● In practice, we define a relative log-likelihood Δlog Pi, where samples are accepted if  Δlog Pi > 0.

4) We build a histogram of the accepted samples to obtain an empirical posterior on mχ

● All other parameters are marginalized over automatically
● In principle, it is possible to compute an analytic posterior, but the large random variance between 

individual realizations makes a converged posterior computationally prohibitive
● We instead opt for a conservative threshold, and uniformly weight the accepted samples



  

Results: disruption of the source morphology
● When the particle mass mχ is low, the FDM density granules make the proposed lens model too lumpy
● The inferred source model takes on a disrupted morphology in an attempt to fit the data, given the lens model
● The inability of a fuzzy lens realization to explain the data is penalized in the likelihood, Δlog Pi 



  

Results: Posterior odds ratio, relative to the smooth model
● mχ = 4.4x10-21 eV is ruled out with a 20:1 posterior odds ratio (POR)
● For vector fuzzy DM (3 DOF), mχ > 1.4x 10-21

● This constraint is from a single lens observation!



  

Work in progress: B1938+666
● Very compact source sitting right on the caustic produces extremely smooth arcs.
● A “kink” in the arc indicates a low-mass perturber object near the critical curve.
● This dataset has ~5 mas resolution at 1.6 GHz, and the feature also appears in the 5GHz data at <2 mas resolution.

Observation and data reduction by John McKean

PRELIMINARY:
● ~4x106 Msun, assuming 

truncated PL
● Must also consider 

different possible  
density profiles, as well 
as redshift.



  

Conclusions
● VLBI provides the highest-resolution lens 

observations available to date. (< 5 mas, future will 
push to < 1 mas)

● Long, thin, smooth arcs are great for probing small-
scale dark structure in strong lenses: Gives us direct 
sensitivity to the presence or absence of fuzzy DM 
granules in the lens.

● We expect sensitivity in mχ to scale with angular 
resolution.

● SKA will discover tons of new radio-bright lenses 
with extended structure like this one.

● Sensitive to 106 Msun subhaloes in WDM, analysis for 
WDM population statistics is ongoing

● Characterizing the sub/LOS-halo population should 
give constraints on WDM mχ ~ 20 keV

Spingola+2018



  

Recap: Fuzzy dark matter
● Fuzzy dark matter (FDM) is a class of ultra-light DM that exhibits a ~kpc-scale de Broglie wavelength
● Main observable phenomena:

● Suppressed halo mass function at low masses (Nadler+2021, Banik+2022, Laroche+2022)
● Cored density profiles (most apparent in dwarf galaxies: Chen+2017, Safarzadeh+2020, Hayashi+2021)
● “Granules” due to wave interference (This work, Marsh+2019, Laroche+2022)

Schive+2014



  

Subhaloes in FDM

Laroche+2022



  

fDM from HST photometry

CASTLES survey

● WFPC2 V-  and I-band photometry gives ~8x109 Msun 
stellar mass component.

● In good agreement with our composite smooth lens 
modeling, which gives 8.6x109 Msun



  

Background: Strong gravitational lensing (galaxy-galaxy)
● We can infer the properties of subhaloes (or granules, or other dark structures) via their effect on the lensed arcs.
● In this talk, we are focusing on the case of extended (resolved) sources, not unresolved point images.
● This slide is just an illustrative example of a single subhalo in CDM/WDM. The rest of the talk is about fuzzy DM, which 

produces a very different mass distribution in the lens galaxy (wait a few slides).

Lovell+2014

CDM WDM
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Lovell+2014

CDM WDM



  

WDM constraints

Lovell+2014

O’Riordan

(Current best constraint is mχ > 9.7 keV by Nadler+2021)

CDM

WDM, mχ = 1.6 keV



  

Warm DM
(mock data)

● Gravitational imaging analysis on 
mock data. Same resolution, array 
configuration, SNR as the real MG 
J0751+2716 observation.  

● Isolated 106 and 107 Msun subhaloes 
are easily detected with data of 
this quality.

● Halo mass function constraints will 
require a statistical approach, e.g. 
ABC (see Aleksandra Grudskaia)

● Characterizing the sub/LOS-halo 
population will give constraints on  
mχ ~ 20 keV, using a single lens 
observation.



  

Warm DM
(real data)

Color scales are consistent now

The real data show no obvious
107 Msun features...



  

Gravitational imaging

A ~108 Msun dark structure detected in Keck AO data: 
(Vegetti+2012)
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