

Fuzzy dark matter constraints using a single VLBI observation of a gravitationally lensed radio jet

Devon M. Powell (Max Planck Institute for Astrophysics)

with Simona Vegetti, John McKean, Simon White, Elisa Ferreira, Simon May, Cristiana Spingola

2302.10941 (this work, submitted to MNRAS Letters) 2207.03375 (smooth lens modeling, published in MNRAS) 2005.03609 (inference method, published in MNRAS)

Background: Dark matter phenomenology

Background: Fuzzy dark matter

- Fuzzy dark matter (FDM) is a class of ultra-light DM that exhibits a ~kpc-scale de Broglie wavelength (originally motivated by the mass of the QCD axion, but also may explain sub-galaxy-scale phenomena better than CDM)
- Main observable phenomena:
 - Suppressed halo mass function at low masses (Nadler+2021, Banik+2022, Laroche+2022)
 - Cored density profiles (most apparent in dwarf galaxies: Chen+2017, Safarzadeh+2020, Hayashi+2021)
 - "Granules" due to wave interference (This work, Marsh+2019, Laroche+2022)

Background: angular resolution

• The sensitivity of a gravitational lens observation to lowmass dark structures is mainly determined by angular resolution.

VLBI (real data) ~10⁶ M_{sun}

Background: Radio interferometry

- Array of radio antennas samples Fourier modes of the sky brightness
- Each pair of antennas measures a "visibility" corresponding to one Fourier component
- The response of the instrument is a Fourier transform (D in the schematic below)
- Distance between antennas and observing wavelength determines angular resolution $-\lambda/d$

ALMA (ESO/NRAO/NAOJ), L. Calada (ESO), Y. Hezaveh et al.

Background: Gravitational lensing with VLBI

- We use global very long baseline interferometry (VLBI)
- Earth-scale antenna spacings give ~5 mas resolution at 1.6 GHz.
- Long, thin arcs are extremely sensitive to perturbations by low-mass dark structures in the lens!

MG J0751+2716 Einstein radius is ~0.4 arcsec

Spingola+2018

Method: Forward modeling with VLBI data

- Forward modeling: Recover a pixellated source brightness model, as well as a likelihood, for a given lens model: Allow us to quantify how well a given lens mass distribution explains the observed data.
- I developed a tractable method for forward-modeling milli-arcsecond-resolution VLBI lens observations (Powell+2021).
- The first application to data was a global VLBI observation of the lensed radio jet MG J0751+2716 (Powell+2022, see below)
- A smooth parametric lens model describes the data surprisingly well. This will be our baseline model for the FDM inference

Method: Generating fuzzy lenses

- Chan+2020 analytically describes the density statistics of virialized wave dark matter in a potential well.
- The variance of the projected surface density fluctuations is a function of the dark matter density profile and the de Broglie wavelength: $\chi_{\chi} = \frac{1}{2} \frac{\lambda \chi \sqrt{\pi}}{2} \int_{-2}^{-2} \frac{1}{2} \frac{1}{2} \frac{\lambda \chi \sqrt{\pi}}{2} \int_{-2}^{-2} \frac{1}{2} \frac$

$$\delta \kappa^2 \rangle = \frac{\lambda \chi \sqrt{\pi}}{\Sigma_c^2} \int \rho_{\rm DM}^2 \, dl,$$

• The (reduced) de Broglie wavelength is:

$$\hbar\chi = \hbar/(m_\chi \sigma_v)$$

Method: Generating fuzzy lenses

- Chan+2020 analytically describes the density statistics of virialized wave dark matter in a potential well.
- The variance of the projected surface density fluctuations is a function of the dark matter density profile and the de Broglie wavelength: $\chi_{\chi} = \frac{1}{2} \frac{\lambda \chi \sqrt{\pi}}{2} \int_{-2}^{-2} \frac{1}{2} \frac{1}$

$$\delta \kappa^2 \rangle = \frac{\lambda \chi \sqrt{\pi}}{\Sigma_c^2} \int \rho_{\rm DM}^2 \, dl,$$

• The (reduced) de Broglie wavelength is:

$$\hbar\chi = \hbar/(m_\chi \sigma_v)$$

Method: Inference on FDM lens models

1) For a single fuzzy lens realization, we compute the likelihood P_i($d \mid m_{\chi}, f_{DM}, \sigma_{v}, \eta, \lambda_{s}$), where:

- *d* are the data (interferometric visibilities)
- m_{χ} is the DM particle mass
- FDM is the dark matter fraction in the lens
- σ_v is the velocity dispersion of the dark matter (a proxy for the depth of the potential well)
- η are the smooth lens model parameters
- λ_s is a hyper-parameter that controls the source regularization strength.
- The subscript *i* denotes that this likelihood is one of an infinite number of random fuzzy DM realizations that are possible given these parameters.

Method: Inference on FDM lens models

2) We generate ~40k fuzzy lens realizations, with parameters drawn from the following priors:

Parameter	Description	Prior
$ \frac{\log_{10}(m_{\chi})}{f_{\rm DM}} \\ \sigma_{\nu} \\ \eta \\ \lambda_{s} $	DM particle mass (eV) Projected DM mass fraction DM velocity dispersion (km/s) Smooth lens model parameters Source regularization strength	$\begin{array}{c} \mathcal{U}(-21.5, -19.0) \\ \mathcal{U}(0.5, 0.8) \\ \mathcal{U}(100, 110) \\ \mathcal{N}(\mu_{\eta, \lambda_s}, \Sigma_{\eta, \lambda_s}) \end{array}$

3) We accept a sample if its likelihood P_i is above the 3σ contours of the baseline smooth model.

- i.e., for a FDM lens realization to be accepted, it must explain the data at least as well as the worst 0.3% of the smooth model posterior samples.
- In practice, we define a relative log-likelihood $\Delta \log P_i$, where samples are accepted if $\Delta \log P_i > 0$.

4) We build a histogram of the accepted samples to obtain an empirical posterior on m_{χ}

- All other parameters are marginalized over automatically
- In principle, it is possible to compute an analytic posterior, but the large random variance between individual realizations makes a converged posterior computationally prohibitive
- We instead opt for a conservative threshold, and uniformly weight the accepted samples

Results: disruption of the source morphology

- When the particle mass m_{χ} is low, the FDM density granules make the proposed lens model too lumpy
- The inferred source model takes on a disrupted morphology in an attempt to fit the data, given the lens model
- The inability of a fuzzy lens realization to explain the data is penalized in the likelihood, $\Delta \log P_i$

Results: Posterior odds ratio, relative to the smooth model

- m_{χ} = 4.4x10⁻²¹ eV is ruled out with a 20:1 posterior odds ratio (POR)
- For vector fuzzy DM (3 DOF), $m_{\chi} > 1.4 \times 10^{-21}$
- This constraint is from a single lens observation!

Work in progress: B1938+666

- Very compact source sitting right on the caustic produces extremely smooth arcs.
- A "kink" in the arc indicates a low-mass perturber object near the critical curve.
- This dataset has ~5 mas resolution at 1.6 GHz, and the feature also appears in the 5GHz data at <2 mas resolution.

PRELIMINARY:

- ~4x10⁶ M_{sun}, assuming truncated PL
- Must also consider different possible density profiles, as well as redshift.

Observation and data reduction by John McKean

Conclusions

- VLBI provides the highest-resolution lens observations available to date. (< 5 mas, future will push to < 1 mas)
- Long, thin, smooth arcs are great for probing smallscale dark structure in strong lenses: Gives us direct sensitivity to the presence or absence of fuzzy DM granules in the lens.
- We expect sensitivity in m_{χ} to scale with angular resolution.
- SKA will discover tons of new radio-bright lenses with extended structure like this one.
- Sensitive to 10⁶ M_{sun} subhaloes in WDM, analysis for WDM population statistics is ongoing
- Characterizing the sub/LOS-halo population should give constraints on WDM $m_{\chi} \sim 20$ keV

Spingola+2018

Recap: Fuzzy dark matter

- Fuzzy dark matter (FDM) is a class of ultra-light DM that exhibits a ~kpc-scale de Broglie wavelength
- Main observable phenomena:
 - Suppressed halo mass function at low masses (Nadler+2021, Banik+2022, Laroche+2022)
 - Cored density profiles (most apparent in dwarf galaxies: Chen+2017, Safarzadeh+2020, Hayashi+2021)
 - "Granules" due to wave interference (This work, Marsh+2019, Laroche+2022)

Subhaloes in FDM

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 Keffective (halo) Laroche+2022

*f*_{DM} from HST photometry

- WFPC2 V- and I-band photometry gives ~8x10⁹ M_{sun} stellar mass component.
- In good agreement with our composite smooth lens modeling, which gives $8.6 x 10^9 \ M_{sun}$

Data from Castles				
Observations		G	Source	
Position	RA(arcsec)	0	-0.634±0.021	
	Dec(arcsec)	0	-0.225±0.026	
fluxes	F160W	18.87±0.16	21.66±0.25	
	F555W	23.24±0.11	25.10±0.25	
	F814W	21.26 ± 0.03	23.72±0.05	

Cleaned data:

CASTLES survey

Background: Strong gravitational lensing (galaxy-galaxy)

- We can infer the properties of subhaloes (or granules, or other dark structures) via their effect on the lensed arcs.
- In this talk, we are focusing on the case of extended (resolved) sources, *not* unresolved point images.
- This slide is just an illustrative example of a single subhalo in CDM/WDM. The rest of the talk is about fuzzy DM, which produces a very different mass distribution in the lens galaxy (wait a few slides).

Background: Strong gravitational lensing (galaxy-galaxy)

- We can infer the properties of subhaloes (or granules, or other dark structures) via their effect on the lensed arcs.
- In this talk, we are focusing on the case of extended (resolved) sources, *not* unresolved point images.
- This slide is just an illustrative example of a single subhalo in CDM/WDM. The rest of the talk is about fuzzy DM, which produces a very different mass distribution in the lens galaxy (wait a few slides).

WDM constraints

Lovell+2014

(Current best constraint is m_{χ} > 9.7 keV by Nadler+2021)

Warm DM (mock data)

- Gravitational imaging analysis on mock data. Same resolution, array configuration, SNR as the real MG J0751+2716 observation.
- Isolated 10⁶ and 10⁷ M_{sun} subhaloes are easily detected with data of this quality.
- Halo mass function constraints will require a statistical approach, e.g. ABC (see Aleksandra Grudskaia)
- Characterizing the sub/LOS-halo population will give constraints on m_x ~ 20 keV, using a single lens observation.

Warm DM (real data)

Color scales are consistent now

The real data show no obvious $10^7 M_{sun}$ features...

200 nms

200 mas

200 mas

Gravitational imaging

Source

0.08

0.06

0.04

0.02

0

0.5

Ft. Davis

St. Croix

Arecibo

Effelsberg

Yebes Wettzell Torun

Hartebeesthoek

SENSITIVITY FUNCTION

0.16 arcsec (Euclid) 0.09 arcsec (HST) 0.07 arcsec (Keck-AO) 0.005 arcsec 1.5 1.5 1.5 1.5 - 0.16 1.0 1.0 1.0 1.0 - 0.12 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.08 -0.5 -0.5-0.5-1.0-1.0-1.0-1.00.04 -1.5-1.5 --1.5-1.5 -0.00 -1-1 $^{-1}$ 0 1 Ω 1 0 1 -10 1 x [arcsec] x [arcsec] x [arcsec] x [arcsec]

increasing resolution

• HST images from the BELLS-GALLERY sample (Ritondale et al. 2019)

- Keck-AO images from the SHARP sample (Vegetti et al. 2012)
- ALMA data from Stacey et al. 2021 (sub.)

•zl>0.5, zs>2

(Despali et al. 2021)

(Despali et al. 2021)

PREDICTIONS

SHAPES IN SELF-INTERACTING DM

Grav. Lensing - galaxies are SIE with constant axis ratio in the center

(Peter+13) - SIDM produces rounder haloes

one of the strongest constraints on SIDM comes from shapes: $\sigma \le 0.1$

BUT: based on DM-only simulations

