Cosmological Simulations with Novel Dark Matter Physics

Ethan Nadler UCLA Dark Matter 2023 3/30/2023

Dark Matter Physics on Small Scales

Snowmass Cosmic Frontier Report (2211.09978)

Dark matter physics affects structure formation throughout cosmic history:

- Clustering on scales smaller than ~1 Mpc is mostly unconstrained
- New DM physics affects abundance & density profiles of low-mass halos
- Simulations are needed to robustly explore DM physics near and below the galaxy formation threshold

Dark Matter Physics on Small Scales

Snowmass Cosmic Frontier Report (2211.09978)

Dark matter physics affects structure formation throughout cosmic history:

- Clustering on scales smaller than ~1 Mpc is mostly unconstrained
- New DM physics affects abundance & density profiles of low-mass halos
- Simulations are needed to robustly explore DM physics near and below the galaxy formation threshold

The Landscape of **Cosmological Simulations**

Cosmological simulations are the \bullet most accurate method for modeling structure formation

Vogelsberger et al. 2020

The Landscape of **Cosmological Simulations**

- Cosmological simulations are the most accurate method for modeling structure formation
- Dark matter-only simulations provide a **robust template** for more complex modeling

Vogelsberger et al. 2020

The Landscape of **Cosmological Simulations**

- Cosmological simulations are the most accurate method for modeling structure formation
- Dark matter-only simulations provide a **robust template** for more complex modeling
- Zoom-in simulations focus on \bullet **small regions** of the universe at high resolution, allowing smallscale structure to be resolved

Vogelsberger et al. 2020

- 262 high-resolution cosmological zoom-in simulations spanning 4 decades of host halo mass
- Includes the first large suites of **LMC** and strong lens analog host halos
- Run with a unified simulation and analysis code pipeline; all data is publicly available!

web.stanford.edu/group/gfc/symphony

EN, Mansfield, Wang et al. (2209.02675)

Symphony Zoom-in Simulations

➤ concentration

Milky Way-est Zoom-in Simulations

- 25 high-resolution cosmological zoom-in simulations of Milky Waylike systems
- All realizations include LMC analogs on first infall and analogs of the Gaia-Enceladus merger

Deveshi Buch (Stanford)

Buch & EN et al. in prep.

→ mass

Rui An (USC)

Andrew Benson (Carnegie)

Vera Gluscevic (USC)

EN et al. in prep.

- Recalibrate WDM halo mass function suppression: full treatment of statistical uncertainties, halo-to-halo scatter, fit degeneracies; integrated with CLASS
- Halo mass function suppression slightly enhanced relative to previous fits

• Interacting dark matter models with **small dark acoustic oscillations** map to effective WDM models:

with the same initial cutoff:

• Interacting dark matter models with large dark acoustic oscillations are "colder" than WDM models

Signatures of Strong Dark Matter Self-interactions

Strong, velocity-dependent self-interactions \rightarrow core-collapse in small halos & core-formation in large halos

VD-100 SIDM Milky Way Simulation

- Extremely high-resolution MW zoomulletin with strong, velocity-dependent self-interactions
- Self-consistent analysis of halos in all environments throughout highresolution volume
- **Deep core-collapse** in ~10% of \bullet isolated halos, ~20% of subhalos down to $10^8 M_{\odot}$

Yang, EN, Yu 2023 (2211.13768)

VD-100 SIDM Milky Way Simulation

VD-100 subhalos are more diverse than in CDM, alleviating too big to fail problem for brightest systems

VD-100 SIDM Milky Way Simulation

VD-100 diversifies central density-pericenter relation; velocity-independent interactions erase anti-correlation

Group-SIDM Strong

First group-scale simulation with

EN, Yang, Yu in prep.

Simulating Dark Matter–Baryon Interactions

- Late-time dark matter-baryon scattering is constrained to be rare
- Idea: simulate DM-baryon scattering with an N-body algorithm, analogous to SIDM; first implementation of this physics!
- Unlike SIDM, these interactions couple DM to a hot, collisional species

Maamari, Gluscevic, Boddy, EN et al. 2021 (2010.02936)

Simulating Dark Matter–Baryon Interactions

DM

Star

Gas

Karime Maamari (USC)

 σ_{DM} : 5e-3 cm²g⁻¹ Scale: 200 kpc npart: 100000, 100000 Mass: 1.3e8, 8.6e5 Msol

t = 0.0000 Gyr/h

Maamari, EN, Gluscevic in prep.

Dark matter-baryon interactions thermalize DM in inner regions, phenomenologically similar to SIDM

- Symphony: 262 high-resolution cosmological zoom-in simulations, spanning four decades of host halo mass, including the first suites of LMC and strong lens analog hosts
- Milky Way-est: 25 high-resolution cosmological zoom-in simulations of Milky Way-like systems, including realistic LMC and Gaia-Enceladus analogs
- Beyond-CDM: 72 high-resolution cosmological zoom-in simulations of Milky Way systems with initial conditions appropriate for warm, interacting, fuzzy DM
- dependent self-interactions yields diverse halo populations
- Simulating dark matter-baryon interactions: first implementation of this physics, with hints of SIDM-like signatures

CARNEGIE

SCIENCE

VD-100 SIDM: extremely high-resolution Milky Way-like system with strong, velocity-

