GRAMS Project Overview

Tsuguo Aramaki for GAPS Collaboration Northeastern University

UCLA Dark Matter 2023 3/29 - 4/1, 2023

GRAMS = Gamma-Ray and AntiMatter Survey

A newly proposed project with international collaboration

First balloon/satellite mission with a low-cost, large-scale LArTPC detector

First experiment to target both astrophysical observations with MeV gamma rays and dark matter searches with antimatter

MeV Gamma-Ray Observations

MeV gamma-ray continuum/line spectrum

- Physics processes/nucleosynthesis
- Indirect dark matter searches/PBH searches —

- Multi-messenger astronomy: EM counterparts of GW from NS-NS/BH Mergers

MeV Gamma-ray Missions (Snowmass CF1)

Past, near-term, and long-term future plans

			4	
hit •, 2	:e 202	Pap 22)er:	
-	-	-)		
-		-)		
		- 5		7
		-)		
-		-)		
-	-	-)		

GRAMS Detector Design

in underground dark matter/neutrino experiments

- Large-scale, low-energy threshold LArTPC has been well-studied/widely-used

Why LArtpc?							
	Z	Y X		Prear Fram			
		LArTPC	Semiconductor/Scintillator				
	ρ (g/cm ³)	1.4	2.3/5.3 (Ge/Si)				
	Toperation	~80K	~240K/~80K				
	Cost	\$	\$\$\$				
	Signals	scintillation light + ionization electrons	electrons, holes				
	X, Y positions	Wires/pads on anode plane (X-Y)	double-sided strips				
	Z position	From drift time	from layer #				
	# of layers	Single layer	multi-layers				
	# of electronics	#	###				
	Dead volume	Almost no dead volume	detector frame, preamps				
	Neutron bkg	Identified with pulse shape	no rejection capability				

- LArTPC is cost-effective and almost no dead volume - Easily expandable to a larger scale with high detection efficiency

		7
B	H	ls

ACTOC			
e-ASTRO			
GRAMS R	alloon		
STAND D	anoor		
GRAMS S	atellit	e	
AMEGO			
Existing	onct	aint	c
	UNSU	anno	5
-			
ן 18			

Indirect DM Searches with Antinuclei

- GRAMS can extensively explore DM parameter space

GRAMS Antimatter Detection Concept

- A time of flight (TOF) system tags
- The antiparticle slows down & stops,
- De-excitation X-rays provide signature
- Annihilation products provide additional background suppression

LArTPC (almost no dead volume) provides - **Excellent** 3D particle tracking capability - **High** particle detection efficiency

TPC: 10 x 10 x 10 cm³ @Northeastern

- Tile/pads (~3mm pitch) for x/y directions
- 60 charge preamps in total
- 16 SiPMS (6 mm x 6mm each) at the bottom
- TPB inside TPC

- Coincident signals in LAr
- Only one charge preamp, one SiPM - Validate event reconstruction techniques with gamma-ray sources Expand the size to $30 \times 30 \times 20 \text{ cm}^3$, MiniGRAMS, segmented into 9 cells -> Prototype (science) flight

Engineering Flight and Beam Test in Japan

Engineering flight

- Scheduled to launch in July 2023
- @JAXA Taiki Aerospace Research Field
- First LArTPC operation at stratosphere $(\leq 10 \text{ min level flight at} \geq 25 \text{ km})$
- TPC: 10 x 10 x 10 cm³ by Waseda
 - PMT (Hamamatsu R6041-06) at the bottom
 - 3 charge channels (Northeastern preamps)
 - No cooling system
- Pressure vessel for RPi/DAQ

Antiproton beam test (may include some antideuterons)

- Scheduled @J-PARC in 2024
- Validate LArTPC performance as an antimatter detector
 - Measure atomic X-rays/annihilation products
- WasedaTPC (MiniGRAMS) x 2

Waseda TPC (30 x 30 x 30 cm³)

GRAMS Collaboration

USA

- Barnard College
- Columbia University
- NASA GSFC
- Northeastern University
- Oak Ridge National Lab
- UCB/SSL
- UT Arlington

International (Japan)

- Hiroshima University
- Kanagawa University
- Osaka University
- RIKEN
- Rikkyo University
- Waseda University

Multidisciplinary team with different backgrounds/expertise Gamma-rays, X-rays, Cosmic-rays, Neutrinos, Direct/Indirect DM searches

University of Tokyo/NDA

5th Collaboration Meeting, June 2022

Summary

- single balloon flight.
- events, based on multi-task neural network/physics-based probabilistic methods.
- GRAMS antideuteron measurements can be essentially background-free dark matter Fermi GCE and AMS-02 antiproton excess.
- (July 2023) and antiproton beam test (2024) @ J-PARC in Japan

- GRAMS is a proposed next-generation mission to target both gamma-ray observations in the poorly explored MeV range and indirect dark matter searches with antimatter.

- The Project will begin with a **balloon** experiment as a step forward to a **satellite** mission.

- With a cost-effective, large-scale LArTPC detector, the sensitivity to MeV gamma rays can be more than an order of magnitude improved compared to previous experiments with a

- We have developed the event reconstruction algorithms for multiple Compton scattering

searches while investigating and validating the possible dark matter detection indicated in

- We are currently testing MicroGRAMS in the US and preparing for the engineering flight

