The Elusive Universe: New Precision Frontiers

Credit: NASA/JPL-Callech Yu-Dai Tsai University of California, Irvine (yudait1@uci.edu) A recorded talk with more details at IAS [link] 2112.07674 (Nature Astronomy 22), 2107.04038 (JCAP 23), 2210.03749

Explore the Elusive Universe

Most of the universe is not fully understood We won't stop until we understand all of it

Strong Probes of the Elusive Universe

Coupling Strength

Yu-Dai Tsai (UC Irvine)

Novel Directions at the Precision Frontier

New technologies with many **practical** applications. **Keep us safe & punctual!**

- The precise tracking of asteroids with space missions, e.g., OSIRIS-REx tracking the dangerous asteroid Bennu ~ 1 meter precision for objects in 1 AU (~ 10¹¹meter-distant) distance
- Tsai et al, arXiv:2210.03749 for dark matter (DM) & cosmic neutrinos
- 2. The precise time keeping (e.g., NASA Deep Space Atomic Clock)
- lose 1 second every 10 million years
 Tsai, Eby, Safronova, Nature Astronomy (2022)
 for ultralight dark matter (ULDM) searches

Searching for ultralight DM bound to Sun

Theme of this talk:

Bridging High Energy Theory, Precision Astronomy, & Space Quantum Technology!

Outline

1. Precision Astrometry:

Dark Matter & Cosmic Neutrinos

2. Space Quantum Probe for Ultralight Dark Matter

Vera Rubin Carnegie Institution for Science

Albert Einstein Mount Wilson Observatory, California

How do we know dark matter exist?

Modified from a slide from Tien-Tien Yu (U. of Oregon)

DM Gravity in Smaller Scale?

Size

A question we asked

Stars

 $\rho_{\rm DM}$ for galaxies

Vera Rubin

From: https://en.wikipedia.org/wiki/File:Galaxy_rotation_under_the_influence_of_dark_matter.ogv under the <u>Creative Commons</u> Attribution-Share Alike 3.0 Unported license.

Solar System Objects

Yu-Dai Tsai (UC Irvine)

Crucial for Direct Detection of DM

 $\rho_{\rm DM}(r)$ for solar system

Wave-like DM

A question we asked

Solar System Objects

We need to go beyond it!

Beyond Velocity: Perihelion Precession

Newton:
$$\mathbf{F}(\mathbf{r}) = -G \frac{m_{\odot} m_*}{r^2} \mathbf{\hat{r}}$$
, no precession.

- *a* is the semi-major axis
- e is the eccentricity, quantify how non-spherical the orbit is.

- "Anomalous" precession of Mercury's perihelion
- One of the first ways to confirm General Relativity

Our Project: Local DM or Cosmic Neutrinos Induce Precessions

Dark Matter Gravity:
$$\mathbf{F}(\mathbf{r}) = \frac{2\pi}{3}Gm\rho_0\left(\frac{2r_0^3}{r^2} - 2r\right)\mathbf{\hat{r}}$$

 $\simeq -\frac{4\pi}{3}Gm\rho_0r\mathbf{\hat{r}} + \frac{4\pi}{3}Gm\rho_0\frac{r_0^3}{r^2}\mathbf{\hat{r}}$

m is the mass of the object

Induced Precession: $\Delta arphi \simeq -4\pi^2
ho_0 a^3 (1-e^2)^{1/2}/M_\odot$

Asteroids & Other Solar System Objects

Radar (Goldstone)

Optical (Pan-STARRS, LSST)

Space Missions

Use **millions of solar-system objects** to study many **fundamental physics topics**. Need **theory** & **data** expertise to realize the full potential of the dataset.

Asteroids & Planetary Defense

- Tracking asteroids is important to our safety
- We have space missions, like OSIRIS-REx, to track dangerous asteroids like Bennu, return sample.
- NASA Plan: OSIRIS-REx will track Apophis and become OSIRIS-APEX

Robust Analysis: High-Fidelity Force Model

NASA JPL & OSIRIS-REx Expert Davide Farnocchia

JPL Planetary Ephemerides DE441

The Yarkovsky effect based on in-situ characterization, solar radiation pressure, Poynting-Robertson drag, etc.

Adding Dark Matter to the Force Model

Force terms considered by Davide Farnocchia

The **dark matter** contribution

$$\begin{split} \ddot{\mathbf{r}}_{i} &= \sum_{j \neq i} \frac{\mu_{j} \left(\mathbf{r}_{j} - \mathbf{r}_{i} \right)}{r_{ij}^{3}} \left\{ 1 - \frac{2(\beta + \gamma)}{c^{2}} \sum_{i \neq i} \frac{\mu_{i}}{r_{ii}} - \frac{2\beta - 1}{c^{2}} \sum_{k \neq j} \frac{\mu_{k}}{r_{jk}} \\ &+ \gamma \left(\frac{\dot{s}_{i}}{c} \right)^{2} + (1 + \gamma) \left(\frac{\dot{s}_{j}}{c} \right)^{2} - \frac{2(1 + \gamma)}{c^{2}} \dot{\mathbf{r}}_{i} \cdot \dot{\mathbf{r}}_{j} \\ &- \frac{3}{2c^{2}} \left[\frac{\left(\mathbf{r}_{i} - \mathbf{r}_{j} \right) \cdot \dot{\mathbf{r}}_{j}}{r_{ij}} \right]^{2} + \frac{1}{2c^{2}} \left(\mathbf{r}_{j} - \mathbf{r}_{i} \right) \cdot \ddot{\mathbf{r}}_{j} \right] \\ &+ \frac{1}{c^{2}} \sum_{j \neq i} \frac{\mu_{j}}{r_{ij}^{3}} \left\{ \left[\mathbf{r}_{i} - \mathbf{r}_{j} \right] \cdot \left[(2 + 2\gamma) \, \dot{\mathbf{r}}_{i} - (1 + 2\gamma) \, \dot{\mathbf{r}}_{j} \right] \right\} \left(\dot{\mathbf{r}}_{i} - \dot{\mathbf{r}}_{j} \right) \\ &+ \frac{3 + 4\gamma}{2c^{2}} \sum_{j \neq i} \frac{\mu_{j} \ddot{\mathbf{r}}_{ij}}{r_{ij}} \end{split}$$

List of uncertainties considered:

1) Errors in planetary trajectories and masses; 2) Errors in perturber masses & trajectories; 3) Higher order relativistic terms; 4) Higher order gravity terms; 5) Simplified assumptions in nongravitational force model (non-spherical effects, Yarkovsky, solar torque, physical parameter evolution, etc.); 7) Solar mass loss and solar wind; 8) Meteoroid impacts, Spacecraft interaction

Planetary constraints, see Pitjev, Pitjeva, Astronomy Letters (2013)

New Model-Independent Constraints on DM Profile

- Tsai, Eby, Arakawa, Farnocchia, Safronova, arXiv:2210.03749 $\rho_{max}(\mathbf{r})$ is the derived ٠ High-e NEOsNEOs Other Asteroids ain 10⁹ upper bound on DM Belt Apophis though only $ho_{
 m max}(r)/ar{
 ho}_{
 m DM}$ 10^{7} gravitational interaction Mercury - Bennu Venus Jupiter $\bar{\rho}_{DM}$ = 0.3 GeV/cm³ ٠ 10⁵ Earth Mars Saturn **NEO: Near-Earth Objects** ۲ 1000 $\bar{
 ho}_{\rm DM} \sim 10^{-18} \frac{m_{\odot}}{({
 m AU})^3}$ 10 0.1 0.1 0.5 1 5 10 r: Distance from the Sun r [AU] Astronomical unit (AU)
- The horizontal lines are NOT error bars, but the coverage of the constraints.

The Implications of Our Constraints

1. Strong constraints on DM models predict local over-densities in

solar system, including solar halo, axion mini-cluster, solar basin, etc.

Implications of the Constraints: DM-SM Interaction

2. Strong constraints on DM-SM long-range interaction,

only ~ 4-6 order stronger than gravity: very strong bound

Constraints on particle physics and cosmology motivated models, **Tsai** *et al*, in progress

Implications of the Constraints: CvB

Close-to-leading constraints on cosmic neutrino background (CvB) over-density profile.

 $\eta \equiv n_{\nu}/\bar{n}_{\nu} \lesssim 3.4 \times 10^{11} (0.1 \text{ eV}/m_{\nu}), 95\% \text{ CL} \text{ [Planets]}$

 $\eta \leq 1.1 \times 10^{11} (95\% \text{ CL})$, from $\nu_e + {}^{3}H \rightarrow {}^{3}H_e^+ + e^-$ KATRIN Col., *PRL* (2022), the leading lab constraint.

Dedicated search for CvB see, e.g., the PTOLEMY proposal, PTOLEMY collaboration, <u>arXiv:1808.01892</u> (2022)

Other CvB phenomenology, see, e.g., Brdar et al, *PLB* (2022)

Summary of High-Energy Theory Targets

• GR Test:
$$\Delta \varphi = \frac{6\pi G M_{\odot}}{a(1-e^2)c^2} \left[\frac{4-\beta}{3}\right] \propto a^{-1}$$

- Fifth Forces: $|\Delta \varphi_{\phi,A'}| \simeq a(1-e) \left[\left(\frac{mc}{\hbar}\right)^2 \frac{g^2}{4\pi G m_p^2} \frac{2\pi}{1+\frac{g^2}{4\pi G m_p^2}} \right] \propto a$ (light mediator limit $m \ll \hbar/ac$), see Tsai et al arXiv:2107.04038
- Dark Matter: $\Delta \varphi \simeq -4\pi^2 \rho_0 a^3 (1-e^2)^{1/2}/M_\odot \propto a^3$
- HEP theory inputs are crucial
- Calling for modern data-analysis approaches

Millions of Objects of Interest

Tsai, Wu, Vagnozzi, Visinelli, Probing long-range fifth forces & ultralights, *JCAP* (2023), <u>2107.04038</u>

Minor Planets	a [au]	\sim Numbers
Near-Earth Object (NEO)	$< 1.3^*$	> 25000
Main-Belt Asteroid (M)	$\sim 2-3$	~ 1 million
Hilda (H)	3.7 - 4.2	> 4000
Jupiter Trojan (JT)	5.2	> 9800
Trans-Neptunian Object (TNO)	> 30	2700
Extreme TNO (ETNO)	> 150	12

*NEOs are defined as having perihelia a(1 - e) < 1.3 au.

Fedderke, Graham, and Rajendran, PRD (2022) Study Gravitational Wave with Asteroids

Roadmap to Observe Local Dark Matter through Gravity

The "Asteroid Network" project for fundamental physics,

- 1. Increase **precision** (e.g., with quantum clocks onboard of space missions)
- 2. Consider more asteroids & minor planets (near Sun & far from Sun)

Outline

1. Precision Astrometry:

Dark Matter, Cosmic Neutrinos, Fifth Forces & GR

2. Space Quantum Probe for Ultralight Dark Matter

NASA DSAC & Parker Solar Probe

- NASA Deep Space Atomic Clock (DSAC) loses one second every 10 million years
- The clock has operated for more than 12 months in space; long-term fractional frequency stability of 3 × 10⁻¹⁵, Burt et al., Nature (2021)
- Exceeds previous space clock performance by up to an order of magnitude
- Clock-Comparison for CPT & Lorentz Violation, Kostelecký, Vargas, PRD '18

 $(685 \text{ kg} \rightarrow 555 \text{ kg})$

• Parker Solar Probe (PSP)

see, e.g., "Probing the energetic particle environment near the Sun,"McComas et al, Nature (2019)

My Question: Why don't we put a quantum clocks on a solar probe? What fundamental physics can we study?

SpaceQ Mission Concept

$$\phi(t, \vec{x}) = \phi_0 \cos(m_\phi t - \vec{k}_\phi \cdot \vec{x} + \dots).$$

(Non-relativistic solution)

 $\omega \simeq m_{\phi}.$

- **Oscillation frequency ~ dark matter mass**
- Propose **a two-clock comparison experiment** onboard **a future Solar Probe**

Projected Sensitivity for ULDM

Spatial Variation of Fundamental Constants

Tsai, Eby, Safronova, Nature Astronomy (2022)

$$k_X \equiv c^2 \frac{\delta X}{X \, \delta U}$$
. $K = \alpha, \mu, \text{ or } m_q / \Lambda_{QCD}$.

 δU : change in gravitational potential .

 $\delta U/c^2\simeq 3.3 imes 10^{-10},~$ Earth variation Safronova et al, Rev. Mod. Phys. (2018) Lange et al, PRL (2021)

 $\delta U/c^2 \sim 9 imes 10^{-8},~$ from Earth to Solar probe at 0.1 AU.

• Achieve constraints on k_X that are a factor of ~ 300 stronger

My Understanding Before Our Projects

New Precision Lab for HEP Theories Cosmology and Astrophysics

Explore Jupiter's Trojan asteroids

OSIRIS-REx \rightarrow OSIRIS-APEX NASA DSAC I

Frederick Reines Nobel Prize Laureate. Professor at UC Irvine Utilized a **nuclear reactor to study free neutrinos**

The Elusive Universe is at the horizon I presented a practical roadmap to explore it wide & deep Thank you for listening!

Summary & Results & Plans

Future Observations

Rubin Observatory/LSST Credit: LSST/NSF/AURA LSST: Large Synoptic Survey Telescope 5 times more asteroids **Space Missions** LUCY/NASA Explore Jupiter's Trojan asteroids James Webb Space Telescope (JWST) NASA

Cosmic Frontier: HEP Theories & New Data

Plan:

- Study more HEP Theory & cosmology topics
- Conduct robust analysis; with data-intense techniques

Improved understanding of

- Dark Matter Local Distribution Tsai et al., arXiv:2210.03749
- 2. Cosmic Neutrino Local Distribution Tsai et al., <u>arXiv:2210.03749</u>
- 3. Ultralight Dark Matter Tsai+, Nature Astronomy (2022)
- 4. Fifth Force Tsai *et al.*, <u>arXiv:2107.04038</u>
- 5. Gravity Theories; Many Other Topics