Small-scale clumping of dark matter and the mean free path of ionizing photons at z = 6

Christopher Cain

Department of Physics and Astronomy University of California, Riverside

March 30, 2023

Christopher Cain

University of California Riverside

Small-Scale Clumping in DM Models

- Collisionless CDM (e.g. WIMP) clumps at $10^{-6}M_{\odot}$ scales
- Well-motivated alternatives share a suppression (or enhancement) of power on small scales relative to CDM

Figure: Lovell+14

Christopher Cain

University of California Riverside

Cosmological Constraints on DM

- Ly α forest constraints: $k \approx 1 - 10 \ h \text{Mpc}^{-1}$
- Gravitational lensing can probe smaller scales (Gilman+22)
- At k ≥ 50 hMpc⁻¹, constraints are model-dependent
- $\sim 10^4 10^8 M_{\odot}$ scales largely unconstrained

University of California Riverside

Christopher Cain

The Mean Free Path at z = 6

- Recent measurement at z = 6 (Becker+21) is much shorter than extrapolations from lower redshifts
- Opacity is affected by $10^4 10^8 M_{\odot}$ gas structures

IGM Gas Dynamics in CDM vs. WDM

Christopher Cain

University of California Riverside

Mean Free Path Evolution

- Black: CDM
 Red: 3 keV WDM
 Blue: 1 keV WDM
- DM models differ considerably in recently ionized gas
- Pressure smoothing erases most of the structures responsible for the differences

University of California Riverside

Christopher Cain

Ongoing/Patchy Reionization

- Patchy reionization model to capture distribution of relaxed/un-relaxed ionized gas
- We model opacity due to neutral islands using RT results
- Several reionization scenarios

Christopher Cain

University of California Riverside

Results: Fiducial Scenario

- Differences between DM models are modest at $z \leq 6$
- At $z \leq 5$, pressure smoothing erases differences with CDM
- At $z \approx 6$, neutral islands obscure differences

Christopher Cain

University of California Riverside

Effect of the "Relaxation" Timescale

- Timescale over which IGM gas dynamically relaxes
- Larger t_{relax} enhances differences between DM models

Christopher Cain

University of California Riverside

Effect of the Photo-ionization Rate

- The photo-ionization rate in ionized gas is highly uncertain
- Degenerate with the effect of the DM model

Models with Enhanced Small-Scale Power

- Axion-like DM models have enhanced small-scale power
- Could help explain the z = 6 MFP, but not a requirement

Conclusions

• The MFP is sensitive to DM clumping on $10^4 - 10^8 M_{\odot}$ scales

 The 5 < z < 6 MFP is unlikely to competitively distinguish DM models until astrophysical uncertainties associated with reionization are better constrained

University of California Riverside

Christopher Cain