A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility

UCLA DM 2023 2023/03/31

S. Golwala for the SuperCDMS Collaboration

SuperCDMS

supercdms.slac.stanford.edu

Overview

<u>SuperCDMS SNOLAB Facility:</u> A venue for DM searches with sub-Kelvin detectors

SuperCDMS SNOLAB: G2 experiment sensitive to

0.5-5 GeV nucleon-scattering DM I-100 eV dark photons and ALPs I-100 MeV dark-photon-coupled light DM Early science: underground at CUTE in 2023, Science Run I starting end 2024/start 2025 (See talk by E. Michielin, Session 12)

Only the start:

facility and technology have much more potential DM landscape is constantly evolving

<u>Upgrade program</u>: (Snowmass white paper, arXiv:2203.08463)

Coherent, multi-staged, multi-prong technical R&D program → new reach in DM parameter space, discovery potential and constraints on DM properties

Time horizons: 5 yrs (post-current-experiment), 10 years, 15 years.

Outline

SuperCDMS SNOLAB Facility review and upgrade potential

Approach to analyzing upgrades

Science reach for: 0.5-5 GeV nucleon-scattering DM I-100 eV dark photons and ALPs I-100 MeV dark-photon-coupled light DM

SuperCDMS SNOLAB: A joint CFI-DOE-NSF G2 dark matter experiment

HV detectors: 8 Ge, 4 Si

- @100V bias, drift phonons transduce eh pair signal to more sensitive phonon sensors
- ~50 eV_{ee} threshold
- projections assume no ER/NR discrimination

iZIP detectors: 10 Ge, 2 Si

 Full ER/NR discrimination down to 1-2 keVnr, limited by ionization readout noise

SuperCDMS SNOLAB: **Potential Upgrades**

HV detectors: 8 Ge, 4 Si

Change detector size, configuration, substrate; reduce cosmogenic bgnds

iZIP detectors: 10 Ge, 2 Si

Cryostat (up to 42 detectors @ 100mm x 33mm; Ge 1.4 kg, Si 0.6 kg)

backgrounds

Reduced materials

SUPER

SuperCDMS Future/Sunil Golwala

SuperCDMS SNOLAB: **Potential Upgrades**

HV detectors: 8 Ge, 4 Si

Change detector size, configuration, substrate: reduce cosmogenic bgnds

iZIP detectors: 10 Ge, 2 Si

Cryostat (up to 42 detectors @ 100mm x 33mm; Ge 1.4 kg, Si 0.6 kg)

SUPER

Reduced materials backgrounds

SuperCDMS Future/Sunil Golwala

Framework for Analyzing Upgrade Options

A range of improvements in both backgrounds and detectors possible

Backgrounds 1/2/3, Detectors A/B/C

 $I \rightarrow 2 \rightarrow 3, A \rightarrow B \rightarrow C$: higher cost (R&D, implementation) and higher risk of failure (lower maturity)

Backgrounds upgrades are lower risk/higher maturity; cost dominated by implementation

Ideally, you construct a matrix \rightarrow

Baseline assumptions:

2 towers (144 readout channels) for each option

6 towers can fit (3x)

2 towers allows multiple different detector types

Max channel count: 2880 (20x)

4 years exposure

Threshold = 7 σ_{pt}

Science Potential		Backgrounds (cost, risk)		
		1 (\$, Low)	2 (\$\$, Med)	3 (\$\$\$, High)
ŝk)	A (\$, Low)	I I Fill in by forecasting sensitivity based on various assumed improvements.		
tectors (cost, ris	B (\$\$, Med)	 Forecasts use: realistic MC-based background models spectrum-level ensemble of 		
De	C (\$\$\$, High)	 realizations simplified profile-likelihood ratio technique 		

Framework for Analyzing Upgrade Options

A range of improvements in both backgrounds and detectors possible

Backgrounds 1/2/3, Detectors A/B/C

 $I \rightarrow 2 \rightarrow 3, A \rightarrow B \rightarrow C$: higher cost (R&D, implementation) and higher risk of failure (lower maturity)

Backgrounds upgrades are lower risk/higher maturity; cost dominated by implementation

Ideally, you construct a matrix \rightarrow

Baseline assumptions:

2 towers (144 readout channels) for each option

6 towers can fit (3x)

2 towers allows multiple different detector types

Max channel count: 2880 (20x)

4 years exposure

Threshold = 7 σ_{pt}

Conclusion:

Detectors $A \rightarrow B \rightarrow C$ dominates: NR discrimination improves or $CE\nu$ NS dominates

Backgrounds $I \rightarrow 2 \rightarrow 3$ provide only incremental gains

Science Potential		Backgrounds (cost, risk)				
		1 (\$, Low)	2 (\$\$, Med)	3 (\$\$\$, High)		
sk)	A (\$, Low)	Fill in by forecasting sensitivity based on various assumed improvements.				
Detectors (cost, ris	B (\$\$, Med)	Forecasts use: • realistic MC-based background models • spectrum-level ensemble of				
	C (\$\$\$, High)	 realizations simplified profile-likelihood ratio technique 				

Detector R&D Options: Multiple Detector Formats

SNOLAB-sized HV: improve phonon resolution to $<< eV_b$ (1 eh pair):

NRs and ERs at different phonon energies due to ionization yield differences: $E_p = N_{eh} e V_b + N_{eh} / Y$

ERs down to 2 eh pair (leakage @ I eh pair)

Y = electron-hole pairs created per eV of recoil energy ("classical" definition) x3 smaller in each dimension ~x25 smaller mass

"10 cm³" iZIP and piZIP: NR discrimination to lower mass w/ improved ionization yield (Y) measurement:

iZIP: improve ionization resolution:

active reset of integrator smaller C_{det}

piZIP: improve phonon resolution, pixellize phonon sensor to separately measure:

 $\rightarrow Y$

- primary phonons: E_R drift phonons: N_{eb}
- arift phonons: N_{eh}

x3² smaller in each dimension ~x25² smaller mass

"I cm³" 0V: reduce size to achieve phonon resolution of $\mathcal{O}(1) \text{ eV} \rightarrow \mathcal{O}(0.1) \text{ eV}$ $\rightarrow \mathcal{O}(0.01) \text{ eV}$

Sub-GeV DM NR spectrum steeper than backgrounds including solar CE_VNS

DPDM, ALPM, DP-coupled light DM below 1 eh pair

Nucleon-Coupled DM

SG-I: Sub-GeV nucleon-coupled DM: Si/Ge 0V Icm³, I0cm³

CE_VNS is dominant background; spectral discrimination enables impressive reach "Environmental/excess" backgrounds are largely unknown, though now being studied crystal/film relaxation, vibration, RF, IR/BB photons, secondary UV/O/IR photons,

SG-2: 0.5-5 GeV nucleon-coupled DM: 3 options to ν fog using ionization yield Y:

HV SNOLAB-sized: NR spectral discrimination: $E_p = N_{eh} e V_b + N_{eh} / Y$

10cm³ iZIP: improved ionization resolution \rightarrow improved Y measurement

10cm³ piZIP: separately measure phonons from E_R and $N_{eh} \rightarrow Y$

UCLA DM 2023

Dark Photon and Axion-Like Particle DM

SG-3, 4: I-100 eV DPDM, ALPDM w/large HV or 0V

HV SNOLAB-sized reach comparable to above, but hard cutoff imposed by ionization leakage (2 eh \sim 3-4 eV)

axion-electron coupling g_{ae}

exceed astro limits below 100 eV for 1st time

test white dwarf cooling hint in long run?

SUPER

SG-5: I-100 MeV DP-coupled LDM w/0V or SNOLAB-sized HV

HV has greater cross-section reach, cuts off in mass $\sim 1 \text{ MeV/c}^2$

Can test:

heavy mediator: Elastic Scalar, Asymmetric Fermion, ELDER, SIMP light mediator: Freeze-in

Discovery Potential: 3σ CL regions for $\sim 3\sigma$ detections

Conclusions

The SuperCDMS SNOLAB facility is amenable to numerous upgrade options

Detector advances promise expanded science reach in both mass and cross-section

Conclusions

The SuperCDMS SNOLAB facility is amenable to numerous upgrade options

Detector advances promise expanded science reach in both mass and cross-section

↓

SuperCDMS SNOLAB is just the start!

The evolving landscape for dark matter demands a diverse program to search exhaustively. Our technologies and facility situate us well to play a leading role to this program.

See the full Snowmass white paper, arXiv:2203.08463

Follow SuperCDMS on **SuperCDMS**