EPIC 2

School of Programming for Scientific Research 2

11-14 October 2022

A rare event search In neutrino physics

Cloe Girard-Carillo

A rare event search in neutrino physics

- Particle physics introduction
- Zoom on neutrino physics
- SuperNEMO: a detector for rare event searches
- Introduction to data aquisition and analysis

What are we composed of?

Zooming inside matter...

Different types of matter: the Standard Model of particle physics

« Daily » matter: what we deal in our everyday life

up quark

Different types of matter: the Standard Model of particle physics

« Daily » matter: what we deal in our everyday life

And all sorts of elementary particles...

up quark

charm quark

down quark

strange guark

top quark

bottom guark

electron neutrino

electron

muon neutrino

+ antimatter

tau

neutrino

Different types of matter: the Standard Model of particle physics

« Daily » matter: what we deal in our everyday life

And all sorts of elementary particles...

up quark

charm guark

down quark

photon

strange guark

gluon

top quark

bottom guark

W and Z bosons

electron

muon

muon neutrino

+ antimatter

Higgs boson

Plus interactions!

The Standard Model of particle physics

Detecting particles

How do we recognise particles from one another ?

 \rightarrow the way they interact with us

Some are easier to observe than others...

Cloud chamber

Discovery of neutrinos : a bit of history

H.Becquerel (1896) Discovery of radioactivity: **B** decay Only electron observed Non conservation of total energy

W.Pauli (1930) Solution to conserve total energy "Neutrino": small interaction probability, neutral, spin 1/2, small or null mass

E.Fermi (1934)

Effective theory Foundation stone of weak interaction

Predicted

C.Cowan & F.Reines (1956) **Experimental dicovery**

Energy continuum

Where are neutrino produced ?

Plenty of sources (on earth, solar system, galaxy and beyond...)

Some questions about neutrino properties

Neutrinos are massive: Dirac or Majorana particles?

First logic guess: Dirac particles

As other fermions: Higgs mechanism generates neutrino masses

Need to **extend the SM** with new particle (right-handed - chirality - neutrino)

Another proposition: Majorana particles

Origin of neutrino masses different from those of charged fermions ?

Some rules are broken Would explain **smallness** of neutrino masses

We need to go beyond the Standard Model

Probe: Neutrinoless double beta decay $(0\nu\beta\beta)$

Probe the neutrino nature with neutrinoless double beta decay

Observe 0vßß to probe Majorana nature of neutrino

Semiconductors, bolometers, time projection chambers, liquid scintillators, tracking calorimeters

Prototypes (1989-1997)

NEMO(1)

NEMO2

NEMO3

...SuperNEMO!!

The SuperNEMO demonstrator: a few pictures

What is a signal? The SN calorimeter example

1- Interaction inside scintillator \rightarrow Scintillation photons created

2- Multiplication of the scintillation photons inside the photomultiplier

1- Scintillator

What is a signal? The SN calorimeter example

1- Interaction inside scintillator \rightarrow Scintillation photons created

2- Multiplication of the scintillation photons inside the photomultiplier

1- Scintillator

From particle interaction to signal

From particle interaction to signal

Using the waveform to deduce infromation on the interaction

The shape of the waveform depends entirely on the type of detector

- Energy = deposited charge
- Time arrival of particles

Using complementary information of tracker signal

The complete detection chain

Now what do we do with this information?

Hint: years of data collection \rightarrow won't do it by hand

Precise simulations of detector (geometry + material) Monte-Carlo method

Data acquisition

Reconstruction of the event Successive algorithms allowing to characterise events

Personal code example

Analysis of simulated or real data

Personal code example

THANK YOU