Excited-state dynamics: Tully scheme implementation and models

Edison Salazar e.x.salazar.quezada@rug.nl

School of Programming for Scientific Research 2 (EPIC 2)

October 11-14, 2022

Photochemistry

Vision

Skin

Photopharmacology

B. Feringa. J. Org. Chem., 2007, 72, 6643

Nonadiabatic molecular dynamics: Photochemistry

Trajectory Surface Hopping: Tully scheme

Mixed quantum/ classical method

Nuclei: Classic (MD) $m_A \mathbf{a}_A(t) = \mathbf{F}_A$

Electrons: Quantum Mechanics $i\frac{d}{dt}|\Psi\rangle = \hat{H}_{el}|\Psi\rangle$

Hop controlled by a stochastic switching algorithm

$$\sum_{\alpha}^{\gamma} P_{\beta \to \alpha} < \xi < \sum_{\alpha}^{\gamma+1} P_{\beta \to \alpha}$$

The nuclear equation of motion (approximated classically)

$$\left[m_A \mathbf{a}_A(t) = \mathbf{F}_A \right]$$

$$m_A \frac{d^2}{dt^2} \mathbf{R}_A(t) = -\nabla_A E_\beta(\mathbf{R}(t))$$

m_A = Mass of atom *A* **R**_A = Position of atom *A E_β* = Energy of the Electronic state β
 R = Geometry of all atoms

Gradient of the energy: $-\nabla_A E_\beta(\mathbf{R}(t))$ needs to be evaluated at each time step by electronic structure methods.

Integration: Velocity Verlet algorithm

Incorporate nonadiabatic effects

Electronic equation-of-motion

The electronic wavefunction is expanded using $\sum |\psi_{\alpha}\rangle\langle\psi_{\alpha}| = I$:

$$\Psi\rangle = \sum_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}|\Psi\rangle$$

The electronic time-dependent Schrödinger equation:

$$\hat{i}\frac{d}{dt}|\Psi\rangle = \hat{H}_{el}|\Psi\rangle$$

Inserting expression 1 in 2 and projecting on $\langle \psi_{\beta} |$:

$$\frac{d}{dt}\langle\psi_{\beta}|\Psi\rangle = -\sum_{\alpha}\left[i\langle\psi_{\beta}|\hat{H}_{el}|\psi_{\alpha}\rangle + \langle\psi_{\beta}|\frac{d}{dt}|\psi_{\alpha}\rangle\right]\langle\psi_{\alpha}|\Psi\rangle$$

Electronic equation-of-motion

$$\frac{d}{dt}\langle\psi_{\beta}|\Psi\rangle = -\sum_{\alpha}\left[i\langle\psi_{\beta}|\hat{H}_{el}|\psi_{\alpha}\rangle + \langle\psi_{\beta}|\frac{d}{dt}|\psi_{\alpha}\rangle\right]\langle\psi_{\alpha}|\Psi\rangle$$

Using the chain rule:

$$\frac{d}{dt}\langle\psi_{\beta}|\Psi\rangle = -\sum_{\alpha} \left[i\langle\psi_{\beta}|\hat{H}_{el}|\psi_{\alpha}\rangle + \langle\psi_{\beta}|\frac{d}{d\mathbf{R}}\frac{d\mathbf{R}}{dt}|\psi_{\alpha}\rangle\right]\langle\psi_{\alpha}|\Psi\rangle$$

Nuclear velocity vector **v** and nonadiabatic coupling $\langle \psi_{\beta} | \nabla | \psi_{\alpha} \rangle$:

$$\frac{d}{dt}\langle\psi_{\beta}|\Psi\rangle = -\sum_{\alpha} \left[i\langle\psi_{\beta}|\hat{H}_{el}|\psi_{\alpha}\rangle + \mathbf{v}\langle\psi_{\beta}|\nabla|\psi_{\alpha}\rangle\right]\langle\psi_{\alpha}|\Psi\rangle$$

Electronic equation-of-motion

$$\left(\frac{d}{dt}\langle\psi_{\beta}|\Psi\rangle = -\sum_{\alpha}\left[i\langle\psi_{\beta}|\hat{H}_{el}|\psi_{\alpha}\rangle + \mathbf{v}\langle\psi_{\beta}|\nabla|\psi_{\alpha}\rangle\right]\langle\psi_{\alpha}|\Psi\rangle\right)$$

Matrix representation (rep):

$$\frac{d}{dt}\mathbf{c}^{rep} = -\left[i\mathbf{H}^{rep} + \mathbf{v}\mathbf{K}^{rep}\right]\mathbf{c}^{rep}$$

Coefficient vector \mathbf{c}^{rep} has the elements $\langle \psi_{\beta}^{rep} | \Psi \rangle$ and $\langle \psi_{\alpha}^{rep} | \Psi \rangle$.

Representation: Diabatic and Adiabatic

In diabatic representation:

$$\left\langle \psi_{\beta}^{dia} \,|\, \nabla \,|\, \psi_{\alpha}^{dia} \right\rangle = 0$$

In adiabatic representation:

$$\langle \psi_{\beta}^{adi} | \hat{H}_{el} | \psi_{\alpha}^{adi} \rangle = \delta_{\beta\alpha} E_{\alpha}^{adi}$$

Coordinate

Relationship between diabatic and adiabatic representation:

$$\mathbf{H}^{adi} = \mathbf{U}^{\dagger} \mathbf{H}^{dia} \mathbf{U}$$

U, the unitary matrix ($\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}$) that diagonalizes \mathbf{H}^{dia} .

Integration and density matrix

Electronic equation of motion:

$$\frac{d}{dt}\mathbf{c}^{adi} = -\left[i\mathbf{H}^{adi} + \mathbf{v}\mathbf{K}^{adi}\right]\mathbf{c}^{adi}$$

Integrating using exponential operator method with small Δt :

$$\mathbf{c}^{adi}(t + \Delta t) = exp\left[-\left(i\mathbf{H}^{adi} + \mathbf{v}\mathbf{K}^{adi}\right)\Delta t\right]\mathbf{c}^{adi}(t)$$

The diagonal of the density matrix is the population of each electronic state:

$$c_{\alpha}(t) = \langle \psi_{\alpha}^{adi} | \Psi \rangle; \ \rho_{\alpha\alpha}(t) = c_{\alpha}c_{\alpha}^* = |c_{\alpha}|^2$$

Molecular dynamics with electronic transitions

John C. Tully AT&T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 24 January 1990; accepted 2 April 1990)

A method is proposed for carrying out molecular dynamics simulations of processes that involve electronic transitions. The time dependent electronic Schrödinger equation is solved self-consistently with the classical mechanical equations of motion of the atoms. At each integration time step a decision is made whether to switch electronic states, according to probabilistic "fewest switches" algorithm. If a switch occurs, the component of velocity in the direction of the nonadiabatic coupling vector is adjusted to conserve energy. The procedure allows electronic transitions to occur anywhere among any number of coupled states, governed by the quantum mechanical probabilities. The method is tested against accurate quantal calculations for three one-dimensional, two-state models, two of which have been specifically designed to challenge any such mixed classical–quantal dynamical theory. Although there are some discrepancies, initial indications are encouraging. The model should be applicable to a wide variety of gas-phase and condensed-phase phenomena occurring even down to thermal energies.

Hopping probabilities: Fewest-switches method

Number of hopping events in Δt is minimized

 $P_{\beta \to \alpha} = \frac{\text{Population increment in } \alpha \text{ due to flux from } \beta \text{ during } \Delta t}{\text{Population of } \beta}$

We assuming that $N_{\beta}(t) > N_{\beta}(t + \Delta t)$. $N_{\beta}(t)$ is a number of trajectories in state β at time t where $N_{\beta}(t) = \rho_{\beta\beta}(t)N$.

The minimum number of transition needed for this change will be $N_{\beta}(t) - N_{\beta}(t + \Delta t)$ hops from state β to any other state.

$$P_{\beta \to \alpha} dt = \frac{N_{\beta}(t) - N_{\beta}(t + \Delta t)}{N_{\beta}(t)} \approx -\frac{\dot{\rho}_{\beta\beta} \Delta t}{\rho_{\beta\beta}}$$

Hopping probabilities: Fewest-switches method

$$P_{\beta \to \alpha} = max \left[0, \frac{2\Delta t}{\rho_{\beta\beta}} \Re \left(\rho_{\beta\alpha} \left[\frac{i}{\hbar} H_{\beta\alpha} + vK_{\beta\alpha} \right] \right) \right]$$

Given a random number $0 < \xi < 1$ a switch occurs if:

$$\boxed{\sum_{\alpha}^{\gamma} P_{\beta \to \alpha} < \xi < \sum_{\alpha}^{\gamma+1} P_{\beta \to \alpha}}$$

Velocity adjustment

In order to conserve the total energy, the velocity is rescaled to compensate the electronic change when the system jumps from a state β to a state α .

Trajectory Surface Hopping : Tully scheme

$$\mathbf{R}_{A}(t), \mathbf{v}_{A}(t)$$

$$\mathbf{a}_{A}(t) = -\frac{1}{m_{A}} \nabla_{A} E_{\beta}(\mathbf{R}(t))$$

$$\mathbf{R}_{A}(t + \Delta t) = \mathbf{R}_{A}(t) + \mathbf{v}_{A}(t)\Delta t + \frac{1}{2}\mathbf{a}_{A}(t)\Delta t^{2}$$

$$\mathbf{R}_{A}(t + \Delta t) = \mathbf{R}_{A}(t) + \mathbf{v}_{A}(t)\Delta t + \frac{1}{2}\mathbf{a}_{A}(t)\Delta t^{2}$$

$$\mathbf{R}_{A}(t + \Delta t) = -\frac{1}{m_{A}} \nabla E_{\beta}(\mathbf{R}(t + \Delta t))$$

$$\mathbf{R}_{A}(t + \Delta t) = -\frac{1}{m_{A}} \nabla E_{\beta}(\mathbf{R}(t + \Delta t))$$

$$\mathbf{R}_{A}(t + \Delta t) = -\frac{1}{m_{A}} \nabla E_{\beta}(\mathbf{R}(t + \Delta t))$$

$$\mathbf{R}_{A}(t) = \mathbf{R}_{A}(t + \Delta t), \mathbf{v}_{A}(t) = \mathbf{v}_{A}(t + \Delta t) |\Delta t$$

$$\mathbf{R}_{A}(t) = \mathbf{R}_{A}(t + \Delta t), \mathbf{v}_{A}(t) = \mathbf{v}_{A}(t + \Delta t), t = t + \Delta t$$

$$\mathbf{R}_{A}(t) = \mathbf{R}_{A}(t + \Delta t), \mathbf{v}_{A}(t) = \mathbf{v}_{A}(t + \Delta t), t = t + \Delta t$$

Code: Classes

	Velocity Verlet Propagator
	Rescale Velocity
Tully model	Surface Hopping Plot
	Print Results
	State

Tully models:

Potential Energies Surfaces

a) Simple avoided crossing:

$V_{11}(x) = A[1 - exp(-Bx)],$	x > 0,
$V_{r}(\mathbf{r}) = -A[1 - ern(Br)]$	r < 0

$$V_{11}(x) = V_{11}(x)$$

$$V_{22}(x) = -V_{11}(x)$$

$$V_{12}(x) = V_{21}(x) = C \exp(-Dx^2).$$

$$A = 0.01, B = 1.6, C = 0.005, and D = 1.0$$

b) Dual avoided crossing:

$$V_{11}(x) = 0,$$

$$V_{22}(x) = -A \ exp(-Bx^2) + E_0$$

$$V_{12}(x) = V_{21}(x) = C \ exp(-Dx^2)$$

$$A = 0.10, B = 0.28, E_0 = 0.05, C = 0.015, and D = 0.06$$

J.C. Tully, J. Chem. Phys., 1990, 93, 1061

Tully models: Model 1

Simple avoided crossing: p = 4 (a.u.)

Tully models: Model 1

Simple avoided crossing: p = 6 (a.u.)

Tully models: Model 1

Simple avoided crossing: p = 20 (a.u.)

Validation: 2000 trajectories

