RE-INVENTING FIXED-TARGET EXPERIMENTS TO PROBE LIGHT DARK MATTER Cristina Mantilla Suarez - Fermilab

EPIC-2 school October 12, 2022

Beam of Particles

Target

Detector

What was the first fixed-target experiment?

source

Electrons + Nucleus (p+/n)

Were any of these quarks discovered in a fixed-target experiment?

(B**)**

Bottom

1977

(C)

Top

1995

Тор

1995

The E288 Experiment Team led by Leon Lederman

Tungsten Beam Dump

μ-

-

Beryllium Absorber -

Target (Copper/Platinum)400 GeV Protons

Detectors and steel absorber

Magnet

μ+

Beam of Protons

Target

Y is a bound state of two b quarks $(b\bar{b})$

Detector

11

THE FIRST ROUND OF THE EXPERIMENT

Saw more events than expected with mass of (Muon⁺ + Muon⁻) ~ 6 (GeV)

THE SECOND ROUND OF THE EXPERIMENT

Mass of two leptons (GeV)

Real peak (Upsilon: pair of b-quarks) ~ 10 GeV

So, this is how the b-quark was discovered. How does this discovery relate to dark matter?

14

Beam

Target

If the beam is intense enough one can produce dark matter

Detector

Beam

Detector

Beam

Dark matter particles can be observably produced in fixed-target experiments.

These particles will be light because fixed-target is compelling and achievable.

>One can take several approaches to search for dark little bit of re-invention.

- experiments are low-energy. Exploring light dark matter
- matter in fixed-target experiments, it just requires a

FOR THE REST OF MY TALK

Motivate the search for light dark matter and why fixed target experiments can probe it. Two forward experiments: DarkQuest and the Light Dark Matter Experiment (LDMX).

DARK MATTER IN THE INTENSITY FRONTIER

We know that dark matter exists.

21

Interacts gravitationally: e.g. it bends light. ► Dark: does not radiate energy in the EM spectrum.

> Old and Stable: it is imprinted in the Cosmic Microwave Background and its lifetime ~ 13 billion years.

> Cold: it moves slowly relative to the speed of light.

- > Abundant: \sim 5 times more abundant than ordinary matter.

But, we do not know its mass and how it interacts (beyond gravity).

THIS LEAVES A LOT OF ROOM FOR SPECULATION...

10⁻²² PROTON MASSES

1 PROTON MASS

1 SOLAR MASS

THIS LEAVES A LOT OF ROOM FOR SPECULATION...

10-22 PROTON MASSES

1 PROTON MASS

1 SOLAR MASS

Thermal dark matter

WHAT IF: DARK MATTER WAS IN A HOT-BATH WITH ORDINARY MATTER

Thermal equilibrium is maintained by DM particles (χ) annihilating into SM particles (f)

AS THE UNIVERSE COOLS DOWN, DM'S ABUNDANCE DECREASES

Below χ mass, DM density falls exponentially

Once the annihilation rate falls bellow the expansion rate: the DM comoving number density is fixed.

DM abundance now

 $<\sigma v > ~ m_{\chi}^2$

Lighter dark matter

Heavier dark matter

WHY THERMAL DARK MATTER?

- and ordinary matter.
- > Predictive: ballpark of a weak-scale mass yields the correct abundance.
- ► **Restrictive**: bounds mass range MeV-TeV.
- **Familiar**: mass regime is near range of known particles.

► Generic: assumes close and direct contact between dark matter

AREN'T EXPERIMENTS ALREADY LOOKING FOR THERMAL DARK MATTER?

DM recoil (ionization, scintillation..) in <u>direct detection</u> e.g. LUX/LZ

AREN'T EXPERIMENTS ALREADY LOOKING FOR THERMAL DARK MATTER?

DM recoil (ionization, scintillation..) in <u>direct detection</u> e.g. LUX/LZ

DM production and escape in <u>colliders</u> e.g. LHC

We have been looking hard in the GeV-TeV regime, but we have not found any hints of DM. Let's go to lower masses.

BELOW < GEV, THERMAL CONTACT IMPLIES NEW SECTOR OF PARTICLES

PORTALS MEDIATE INTERACTION BETWEEN DARK MATTER AND SM

New force e.g Dark Photon (A') weakly coupled to SM photon (γ)

WHY DARK SECTORS?

Predict DM particle that is stable and dark. Still falls under thermal origin hypothesis because there is small "cross-talk" between SM and DM.

THE INGREDIENTS TO MAKE A DARK SECTOR

*FROM NHAN TRAN

Lots of particles (dark sectors have small couplings)

Collider

Beam dump

Fixed-target

HOW CAN YOU PRODUCE DARK SECTORS IN FIXED-TARGET EXP.?

e.g. via beam Bremsthrahlung: "braking radiation"

HOW CAN YOU PRODUCE DARK SECTORS IN FIXED-TARGET EXP.?

e.g. via beam Bremsthrahlung: "braking radiation"

HOW CAN YOU DETECT DARK SECTORS?

Visible

 $2m_f < m_{A'} < 2m_x$

Invisible

 $m_{A'} > 2m_x$

41

WHICH METHOD YOU CHOOSE DEPENDS ON WHAT YOU WANT TO FIND*

Produce mediators that decay to SM and study dark and minimal interactions

*FROM NATALIA TORO

X

Produce DM particles and explore predictive DM models

WHY ACCELERATORS?

- Enough intensity to produce DM particles. Complimentary to direct detection:
- - Explores relativistic production of DM.
 - Explores whole dark sector of particles.
 - Explores couplings of dark matter w. different particles.
 - Still need direct detection to measure DM abundance or stability.

DM - e scattering

~ 4YEARS AGO: DOE BASIC **RESEARCH NEEDS** STUDY FOR SMALL DARK MATTER PROJECTS

Accelerators can reach predictions of thermal light dark matter in a short time scale and they are "small" or "low-cost". We better build them.

BU COSALADORATORY 12 2 E JNIVERSITY VIRGINIA University of Victoria

Proton Beam

Target

Visible pairs of muons/ Dark Matter electrons mediator

Detector

PROTON BEAM FIXED-TARGET SETUP AT FERMILAB

► 120 GeV proton beam.

- Number of protons: 10¹³
 protons every 4s. spill within
 1ns: ~0-80000 protons.
- Total expected by 2025: 10¹⁸
 Protons on Target.
- Fermilab's accelerator upgrade
 PIP-II by ~2026: 10²⁰ Protons on Proton-fixed Target.

A GENERATION OF EXPERIMENTS USING THE SAME SPECTROMETER

SeaQuest 2014-2017

SpinQuest 2022-2026

DarkQuest 2023-2026

Intense and high energy Proton Beam

BUT WITH DIFFERENT PURPOSES

DarkQuest 2023-2026

Detect muons to probe the asymmetry of antimatter in the proton

SeaQuest results published in Nature 2020 Article The asymmetry of antimatter in the proton

52

BUT WITH DIFFERENT PURPOSES

Detect muons to probe the asymmetry of antimatter in the proton

ā/ū > 1?

Detect muons to probe the sea quark's orbital momentum

Detect muons and electrons to **probe decays of light dark matter mediators** $A' > \ell^+ \ell$

DarkQuest produces dark matter mediators (e.g. A') with the proton beam.

► It looks for decays into a pair of muons or electrons.

► Because the interaction of the mediator w. leptons is very weak, the lifetime of the mediator is large.

54

DarkQuest is an opportunity: the muon spectrometer exists, an analysis of muon data can already be made and it only requires minimal (low cost) upgrades to be able to detect electrons.

► It is compelling because it uses the highest-energy proton beam in the US and it can be done in a short time-scale.

>It is currently looking for funding, a nuclear physics program is also planned to run in parallel.

LIGHT DARK MATTER EXPERIMENT UCSB **Caltech Caltech** UNIVERSITY OF MINNESOTA Lunds UNIVERSITET ACCELERATOR LABORATORY UNIVERSITY VIRGINIA STANFORD TEXAS TECH UNIVERSITY UNIVERSITY.

4 GeV Electron Beam

ELECTRON BEAM SETUP AT SLAC

4 GeV electron beam delivered by SLAC (Linac to End-Station A) High bunch repetition 37.2 MHz, 1e8 EOT/s

Expected luminosity: 4e14 Electrons on Target (EOT) in 1-2 years (2024-2026?)

Upgrade and ultimate target: 1e16 EOT (>2027, 8 GeV)

WHY IS LDMX CHALLENGING?

Identify each single incoming and outgoing electron

Select only events with missing momentum

Operate with a high amount of electrons in a short period of time

Need beam with minimal energy spread, high rate and low current.

Make a decision (trigger) every ~25ns: LHC-like readout.

Every detector (and electronics) needs to be radiation-hard.

IDENTIFYING BACKGROUNDS: HARD BREMSSTRAHLUNG

4 GeV Electron Beam

Target

IDENTIFYING BACKGROUNDS: TRIDENT AND PHOTO-NUCLEAR

4 GeV Electron Beam

Target

IDENTIFYING BACKGROUNDS: RARE SHOWER RECONSTRUCTION

4 GeV Electron Beam

Then use electron's transverse momentum to identify signals with different dark matter masses.

TESTING THE PROTOTYPE

Hadronic Calorimeter (HCal) - Trigger scintillator (TS)

LDMX is a neat idea: electron recoils against dark matter, measure electron p_T .

- any rare SM backgrounds.
- before.

>One of its main analysis challenges is to contain and measure

►It's need for a clean and intense electron beam, and detectors that can sustain this beam, it is probably why it was not done

► But now we have the technology: we can build extremely fast and radiation hard readout electronics so we should build it.

Berlin, Gori, et. al. (2018) and N. Blinov

 $m_{A'} \; [\text{GeV}]$

Fixed-target experiments have unique potential to probe sub-GeV dark matter. DarkQuest and LDMX explore visible and invisible mediator decays and are complementary in the mediator/DM mass parameter space. They have short-timescales, almost-ready-to-run

beam lines, and they are low-cost.

THANKS!