Electric dipole moment, topology and quantization of the Su-Schiefer-Heeger model

Physics Department EPN

Rodrigo Sandoval Leonardo Basile 2022

Quantum Hall effect

Topological Phases of Matter, New particles, Phenomena and Ordering Principles, **Roderich Messier and Joel Moore**

Motivation

Quantum one-way street in topological insulator nanowires

Latitud Cero

Nature Nanotechnology (2022); dot: 10.1038/s41565-022-02224-1 https://www.unibas.ch/en/News-Events/News/Uni=Research/

EPIC 2 11-14 October 2022

Resea

Electric monopole

 $|\phi(\mathbf{r},t)|^2 d^3 r = dP(\mathbf{r},t)$

Resea

Polarization $\mathbf{P} = \frac{1}{V_{\text{cell}}} \int_{\text{cell}} \mathbf{r} \,\rho(\mathbf{r}) \,d^3r \,,$

Charges separated, polarized entities

Berry Phases in Electronic Structure Theory, Electric Polarization, Orbital Magnetization and Topological Isulators, David Vanderbilt

EPIC 2 11-14 October 2022

Modern theory of Polarization

EPIC 2 11-14 October 2022

Wannier Functions

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$$
 Bloch functions

$$W_n(\mathbf{r} - \mathbf{R}) = \frac{V}{(2\pi)^3} \int_{BZ} d^3 \mathbf{k} e^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{n\mathbf{k}}(\mathbf{r})$$

Localized Wannier functions

$$\overline{\mathbf{r}}_n = \langle \mathbf{r}_n \rangle = \int W_n^*(\mathbf{r}) \mathbf{r} W_n(\mathbf{r}) d^3 \mathbf{r}$$

Averaged electron position

EPIC 2 11-14 October 2022

Quantum-Mechanical Position Operator in Extended Systems (R. Resta 1998)

Position operator

$$\langle X \rangle = \frac{L}{2\pi} \operatorname{Im} \ln \left\langle \psi_0 \left| e^{i \frac{2\pi}{L} \hat{X}} \right| \psi$$

$$P_{\text{elec}} = \lim_{L \to \infty} \frac{e}{2\pi} \operatorname{Im} \ln \left\langle \psi_0 \right| e$$

Events

E - I $\mathcal{E} + l$ $S_{mn} = \int dV \, u_m^*(\vec{r}) \, u_n(\vec{r})$ and E $\psi_m u_m(\vec{r})$ ų (r ψ_2 E t $|\psi_1|$ =Uh) Е $\left\{ \psi_{1} \right\}$ $E \left\{ \begin{array}{c} \psi_1 \\ \vdots \\ \psi_1 \end{array} \right\} = \left\{ \begin{array}{c} \psi_1 \\ \vdots \\ \psi_1 \\ \psi_1 \\ \psi_1 \\ 1 - s^2 \end{array} \right\} = \left\{ \begin{array}{c} \psi_1 \\ \psi_1 \\ \psi_1 \\ \vdots \\ t - \varepsilon \end{array} \right\} = \left\{ \begin{array}{c} \psi_1 \\ \psi_1 \\ \psi_1 \\ \vdots \\ \varepsilon \\ t - \varepsilon \end{array} \right\} = \left\{ \begin{array}{c} \psi_1 \\ \psi_1 \\ \vdots \\ \varepsilon \\ t - \varepsilon \end{array} \right\}$ rogen Molecule tLatituesero - EV 2 TY ψ_2 - εs $\mathcal{E} - \mathcal{I}S$ Ψ_1 $\varepsilon + t^{H_{mn}}$ Ψ_2 $(\vec{r}) u_n(\vec{r})$ vents $1+s S_{mn}$ E $(V)_{m} u_{m}^{14/1} (r^{2})^{0}$ ψ_{N-1} $= \frac{\hbar^2}{L \psi(\vec{v})} = U(\vec{r}) + \frac{1}{\psi}(\vec{r}) + U(\vec{r}) + U(\vec{r}$ $] [\Psi_N]$ Fur(r $\frac{L\psi(\mathbf{v})}{2m} \neq U$ Latitud Cero Home Project I Events "basis functions" Researchers EPIC **&**2+ $H_{\rm op}$ $E\psi(r)$ EP 11-14 October 2022 2*m*

Models, models *a*:*ELattice spacing* $\begin{vmatrix} \psi_1 \\ \psi_2 \end{vmatrix} \psi_n \qquad \begin{vmatrix} \varepsilon & t \\ t & \varepsilon & t \end{vmatrix} \psi_0 \overset{\cdot}{} \overset{\cdot$ ψ_2 Latitud Ero - FPIC 2 Ψ_{N-1} **Open** dition H_{mn} $\psi_2^{\text{Latitud Cerp} - EPIC 2}$ FPIC School (11-1)4 October $\begin{bmatrix} \psi_{N-1} \\ \psi_{N} \end{bmatrix} \qquad \begin{bmatrix} \vdots \vdots \vdots \\ \cdots & 0 & t & \varepsilon \end{bmatrix} \begin{bmatrix} \psi_{N-1} \\ \psi_{+} & t \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \end{bmatrix} e^{-ika} + \frac{\psi_{2}}{\epsilon} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{bmatrix} \begin{bmatrix} \psi_{2}$

 $E_E I e_e^{-ika} + E_e^{+ika}$ a : alathiattige spacing $\Psi_n \psi_n^{=} = \Psi_0 \psi_n^{+inkq} e^{inkq}$ $\begin{bmatrix} \varepsilon & t^t & 0 & \cdots & t \\ t & \varepsilon & t & 0 & \cdots \\ t & \varepsilon & t & 0 & \cdots \\ 0 & t & \varepsilon & t & 0 & \cdots \\ 0 & t & \varepsilon & t & 0 & \cdots \end{bmatrix}$ ctober 2022) ONDITION E $|\Psi_{N|-1}|$ +inkaProjects Events $\left(\psi_{N} \right)$ $t + t \psi_{n-1} + \varepsilon \psi_n + t \psi_{n+1}$ 14/10/22, 09:11 EPIC School (11-14 October 2022) EPIC 2 (2022) $E = t \frac{\psi_{n-1}}{2} + \varepsilon + t \frac{\psi_{n+1}}{2} = t e^{-ika} + \varepsilon + \varepsilon e^{-ika} + \varepsilon e^{-ika}$ $E = t \frac{\psi_n \psi_{n+1}}{2} + \varepsilon + t \frac{\psi_{n+1}}{2} = +t e^{-ika} + \varepsilon + t e^{+ik} \text{EPIC 2} \quad \text{11-14 October 2022}$

	$\int \epsilon$	t_1	0	0	• • •
$H_{SSH} =$	t_{1}^{*}	ϵ	t_2	0	0
	0	t_2^*	ϵ	t_1	0
	0	0	t_1^*	ϵ	t_2
	•••	0	0	t_2^*	ϵ
	$\int 0$	• • •	0	0	t_1^*

 $H_{SSH} =$ ϵ • • • $t_{1}^{*} \\ 0 \\ 0$ 0 0 $H_{SSH} =$ t_2 0 0 t^*_{\circ} • • • t_1^* t_{2}^{*}

Expected value of the position operator

$$U_x = \sum_{R=1}^{N} \sum_{\alpha=1}^{N_{\text{orb}}} |R, \alpha\rangle e^{i\frac{2\pi}{N}R} \langle R,$$

$$P_{\rm occ} = \sum_{n=1}^{N_{\rm occ}} \left| \psi_n^{\rm elec} \right\rangle \left\langle \psi_n^{\rm elec} \right|$$

$$\langle U_x \rangle = \langle P_{\rm occ} | U_x | P_{\rm occ} \rangle$$
 PM

α **Position operator**

Latitud Cero - EPIC 2

Projection operator on **OCCUPIED States**hool (11-14 October 2022)

Electric dipole

1. Estudio del Monopolo y Dipolo Eléctrico en el modelo Tight Binding QTI con Cuadrupolo Eléctrico Cuantizado, R. Sandoval (2021)

- 2. Topological Phases of Matter, New particles, Phenomena and Ordering Principles, Roderich Messier and Joel Moore (2021) 3. Berry Phases in Electronic Structure Theory, Electric Polarization, Orbital Magnetization and Topological Isulators, David Vanderbilt (2018) 4. Lessons from Nanoelectronics. PArte B: Quantum Transport, Supriyo Datta (2017)

GRACIAS