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Symmetries

HS gauge theory: theory of maximal symmetries

Usual lower-spin symmetries

• Relativistic theories: Poincaré symmetry:

δxa = εa + εabx
b εa : translations; εab : Lorentz rotations

Lie algebra: δxa = [T, xa] , T = εaPa + εabMab

Pa =
∂

∂xa
, Mab = xa

∂

∂xb
− xb

∂

∂xa

[Mab, Pc] = Paηbc − Pbηac

[Mab, Mcd] = Madηbc −Mbdηac −Macηbd +Mbcηad

[Pa , Pb] = 0
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Other Low-Energy Symmetries

(A)dS deformation

[Pa , Pb] = ΛMab

Λ < 0: AdS, o(d− 1,2)

Λ > 0: dS, o(d,1)

Λ = 0: Minkowski space, iso(d− 1,1)

• SUSY

Pa,Mab −→ Pa,Mab,Qα , α = 1,2,3,4

• Inner symmetries: generators Ti are space-time invariant

[Ti , (Pa,Mab)] = 0

Standard Model: Ti ∼ SU(3)× SU(2)× U(1)

• Conformal (super)symmetries
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Local Symmetries

Useful viewpoint: any global symmetry is the remnant of a

local symmetry with parameters like εa(x), εab(x), εα(x), εi(x) being

arbitrary functions of space-time coordinates

Local symmetries: gauge fields An
a

δAn
a = ∂aε

n + . . .

S −→ S +∆S + . . . , ∆S =
∫
Md

Ja
n(φ)A

n
a(x)

∆S: Noether current interaction.

Subtlety

If φ(x) were gauge fields with gauge parameters ε′, Ja
n(φ) may not be

invariant under the ε′ symmetry

Noether current interaction for several gauge fields may be obstructed
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Why HS Theories?

Key question: is it possible to go to larger HS symmetries?

What are HS symmetries and HS counterparts of lower-spin theories

including GR?

What are physical motivations for their study and possible outputs?
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Fronsdal Fields

All m = 0 HS fields are gauge fields C.Fronsdal 1978

φa1...as is a rank s symmetric tensor obeying φc
c
b
ba5...as = 0

Gauge transformation:

δφa1...as = ∂(a1εa2...as) , εbba3...as−1 = 0

Field equations: Ga1...as(x) = 0 Ga1...as(x) : Ricci-like tensor

Ga1...as(x) = �φa1...as(x)− s∂(a1∂
bφa2...asb)

(x) +
s(s− 1)

2
∂(a1∂a2φ

b
a3...asb)

(x)

Action

S =
∫
Md

(
1

2
φa1...asGa1...as(φ)−

1

8
s(s− 1)φb

b a3...asGc
c a3...as(φ)

)
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No-go and the Role of (A)dS

In 60th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a nontrivial local field theory in

Minkowski space

In 70th it was shown by Aragone and Deser that HS gauge symmetries

are incompatible with GR if expanding around Minkowski space

Green light: AdS background with Λ ̸= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ→ 0 is singular
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HS Symmetries Versus Riemann Geometry

HS symmetries do not commute with space-time symmetries

[T a , THS] = THS , [T ab , THS] = THS

HS transformations map gravitational fields (metric) to HS fields

Consequence:

Riemann geometry is not appropriate for HS theory:

concept of local event may become illusive!

Related feature: HS interactions contain higher derivatives:

How non-local HS gauge theory is?
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HS Gauge Theory and Quantum Gravity

HS symmetry is in a certain sense maximal relativistic symmetry. Hence,

it cannot result from spontaneous breakdown of a larger symmetry:

HS symmetries are manifest at ultrahigh energies above any scale

including Planck scale

• HS gauge theory should capture effects of Quantum Gravity:

restrictive HS symmetry versus unavailable experimental tests

• Lower-spin theories as low-energy limits of HS theory:

lower-spin symmetries: subalgebras of HS symmetry

• String Theory as spontaneously broken HS theory?! (s > 2,m > 0)
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HS AdS/CFT Correspondence

AdS4 HS theory is dual to 3d vectorial conformal models

Sezgin–Sundell (2002), Klebanov-Polyakov (2002); Giombi and Yin (2009)

AdS3/CFT2 correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of AdS/CFT
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Global HS Symmetry

HS symmetry in AdSd+1:

Maximal symmetry of a d-dimensional free conformal field(s)=singletons

usually, scalar and/or spinor

What are symmetries of KG equation in Minkowski space?

�C(x) = 0 , � = ηab
∂2

∂xa∂xb

Shaynkman, MV 2001 3d; Shapovalov, Shirokov 1992, Eastwood 2002 ∀d

i Poincaré

ii Scale transformation (dilatation)

δC(x) = εDC(x) , D = xa
∂

∂xa
+

d

2
− 1

iii Special conformal transformations

δC(x) = εaK
aC(x) , Ka = (x2ηab − 2xaxb)

∂

∂xb
+ (2− d)xa
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Conformal HS Algebra

Algebraic construction simplifies in d = 3 using spinor formalism most

relevant in the context of AdS4/CFT3 HS holography Shaynkman, MV (2001)

3d Lorentz algebra: o(2,1) ∼ sp(2, R) ∼ sl2(R). 3d spinors are real

sp(2, R) invariant tensor ϵαβ = −ϵβα relates lower and upper indices

Unfolded massless equations take the form(
∂

∂xαβ
+

∂2

∂yα∂yβ

)
C(y|x) = 0 , C(y|x) =

∞∑
n=0

Cα1...α2n(x)yα1 . . . yα2n

3d conformal HS algebra is the algebra of various differential operators

ϵ(y, ∂
∂y) obeying ϵ(−y,− ∂

∂y) = ϵ(y, ∂
∂y)

δC(y|x) = ϵ(y,
∂

∂y
|x)C(y|x)

ϵ(y,
∂

∂y
|x) = exp

[
−xαβ

∂2

∂yα∂yβ

]
ϵgl(y,

∂

∂y
) exp

[
xαβ

∂2

∂yα∂yβ

]

ϵgl(y,
∂
∂y) describes global HS transformations
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NonAbelian HS Algebra

3d Conformal HS symmetry = AdS4 HS symmetry

HS gauge fields: ω(Y |X)

YA = (yα, ȳα̇), α, α̇ = 1,2 two-component spinor indices

ω(Y |X) =
∞∑

n,m=0

1

2n!m!
ωα1...αn ,α̇1...α̇m(X)yα1 . . . yαnȳα̇1 . . . ȳα̇m

HS curvature and gauge transformation

R(Y |X) = dω(Y |X) + ω(Y |X) ∗ ∧ω(Y |X)

δω(Y |X) = Dϵ(Y |X) = dϵ(Y |X) + [ω(Y |X) , ϵ(Y |X)]∗

[yα , yβ]∗ = 2iεαβ , [ȳα̇ , ȳβ̇]∗ = 2iεα̇β̇

Star product is nonlocal in Y A !

(f ∗ g)(Y ) = f(Y ) exp [i
←−
∂A
−→
∂BCAB]g(Y )
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Properties of HS Algebras

Global symmetry of symmetric vacuum of bosonic HS theory

Let Ts be a homogeneous polynomial of degree 2(s− 1)

[Ts1 , Ts2] = Ts1+s2−2 + Ts1+s2−4 + . . .+ T|s1−s2|+2 .

Once spin s > 2 appears, the HS algebra contains an infinite tower of

higher spins: [Ts, Ts] gives rise to T2s−2 as well as T2 of o(3,2) ∼ sp(4).

Usual symmetries: spin-s ≤ 2 u(1) ⊕ o(3,2): maximal finite-dimensional

subalgebra of hu(1,0|4). u(1) is associated with the unit element.
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Space-Time and Spin

Space-time M is where symmetry G = O(d− 1,2) acts

Spin s: different G-modules Vs where fields ϕA(x) are valued.

Vs contain ground (primary) fields ϕA(x) along with their derivatives

∂n1 . . . ∂nkϕ
A(x) (descendants)

HS vertices contain higher derivatives Bengtsson, Bengtsson, Brink (1983),

Berends, Burgers and H. Van Dam (1984), (1985), Fradkin, MV; Metsaev,...

HS symmetries Fradkin, MV 1986 are infinite dimensional extesions of G

Infinite towers of spins ⇒ infinite towers of derivatives.

How (non)local is HS gauge theory?
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Locality and Non-Locality arXiv: 2208.02004

Equations of motion in perturbatively local field theory EA0,s0(∂, ϕ) = 0

EA0,s0(∂, ϕ) =
∞∑

k=0,l=1

a
n1...nk
A0A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

have a finite # of non-zero coefficients a
n1...nk
A0...Al

at any order l.

s0 is the spin of the field on which the linearized equation is imposed

HS theory involves infinite towers of Fronsdal fields of all spins.

a
n1...nk
A0...Al

may take an infinite # of values.

It makes sense to distinguish between Gelfond, MV 2018

local: finite number of derivatives at any order

a
n1...nk
A0...Al

(s0, s1, . . . sl) = 0 at k > kmax(l)

spin-local: finite number of derivatives for any finite subset of fields

a
n1...nk
A0...Al

(s0, s1, s2, . . . sl) = 0 at k > kmax(s0, s1, s2, . . . sl)

non-local: infinite number of derivatives for a finite subset of fields at

some order.
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Compact Spin-Locality

The simplest option: replacement of the class of local field theories

with the finite # of fields by spin-local models with infinite # of fields.

Spin-local-compact vertices in addition obey

a
n1...nk
A0A1...Al

(s0, s1, . . . , sk + tk , . . . , sl) = 0 tk > t0k ∀k

non-compact otherwise.

Compactness is in the space of spins, not in space-time

Both types of vertices in HS theory:

Cubic HS vertices ω ∗ ω built from HS gauge potentials are spin-local-

compact: spins s0, s1, s2 obey the triangle inequalities s0 ≤ s1 + s2 etc.

Vertices associated with the conserved currents built from gauge invari-

ant field strength are spin-local non-compact. These include conserved

currents of any integer s0 built from two spin-zero fields (s1 = s2 = 0).
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Field Redefinitions

A local theory remains local under perturbatively local field redefinitions

ϕBs0 → ϕBs0 + δϕBs0 , δϕBs0 =
∞∑

k=0,l=1

bB
n1...nk
A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

with a finite # of non-zero coefficients at any order.

Which field redefinitions leave vertices spin-local?

General spin-local field redefinitions do not work since contributions of

all spin sp redefined fields may develop non-locality

δEA0,s0(∂, ϕ) =
∞∑

sp=0

∞∑
p,k,k′=0,l,l′=1

a
n1...nk
A0A1...Al

(s0, s1, s2, . . . , sp, . . . , sl)

∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Ap−1
sp−1 ϕ

Ap+1
sp+1 . . . ϕ

Al
sl b

Apm1...mk′
B1...Bl′

(sp, t1, . . . , tl′)∂m1 . . . ∂mkϕ
B1
t1

. . . ϕ
Bl′
tl′

Spin-local-compact field redefinitions in spin-local theories:

proper substitute since summation over sp is finite.

One of the central problems in HS theory is to find a field frame making

it (spin-)local. Given non-locally looking field theory, the essential

question is whether or not it is spin-local in some other variables.
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HS Multiplets

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

ωα1...αn ,β̇1...β̇m
and Cα1...αn ,β̇1...β̇m

with all n ≥ 0 and m ≥ 0.

Generating functions ω(Y |x) and C(Y |x): unrestricted functions of com-

muting spinor variables Y = (yα, ȳα̇)

A(Y |x) =
∞∑

n,m=0

1

2n!m!
Aα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

Gauge one-forms ωα1...αn ,β̇1...β̇m
, n+m = 2(s− 1)

s = 1 : ω(x) = dxνων(x)

s = 2 : ωαβ̇(x) , ωαβ(x) , ω̄α̇β̇(x)

s = 3/2 : ωα(x) , ω̄α̇(x)

Frame-like fields: |n−m| = 0 (bosons) or |n−m| = 1 fermions

Auxiliary Lorentz-like fields: |n−m| = 2 (bosons)

Extra fields: |n−m| > 2 and zero-forms C(Y |x): higher derivatives
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Free Field Unfolded Massless Equations

The full unfolded system for free massless bosonic fields is 1989

⋆ R1(y, y | x) =
i

4

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0 | x)

)
⋆⋆ D̃0C(y, y | x) = 0

R1(y, ȳ | x) := Dad
0 ω(y, ȳ | x) Dad

0 := DL − eαβ̇
(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)

D̃0 = DL + eαβ̇
(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
DL := dx −

(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)

Hαβ := eαα̇e
βα̇ , H

α̇β̇ := eα
α̇eαβ̇

⋆⋆ implies that higher-order terms in y and ȳ describe higher-derivative

descendants of the primary HS fields
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Zero-Form Sector

Equations on the gauge invariant zero-forms C

C(Y ;K|x) =
∞∑

n,m=0

1

2n!m!
Cα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

decompose into independent subsystems associated with different spins

Spin-s zero-forms are Cα1...αn ,α̇1...α̇m(x) with

n−m = ±2s

Perturbative unfolded equations

dxC = σ−C + lower-derivative and nonlinear terms

σ− := eαβ̇
∂2

∂yα∂ȳβ̇
, σ2− = 0

Cα1...αn ,α̇1...α̇m(x) contain n+m
2 − {s} space-time derivatives of the spin-

s dynamical fields. Presence of zero-forms C in the HS vertices may

induce infinite towers of derivatives and, hence, non-locality.
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HS Vertices

The problem: consistent non-linear corrections 1988 in the local frame

dxω = −ω ∗ ω +Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . . ,

dxC = −[ω,C]∗+Υ(ω,C,C) + . . .

The vertices can be put into the form

Υ(Φ,Φ, . . .) = F (Qi, Pnm; Q̄j, P̄ kl)Φ(Y1) . . .Φ(Yn)|Yi=0

with Φ = ω, C and some non-polynomial functions F (Qi, Pnm; Q̄j, P̄ kl) of

the Lorentz-covariant combinations

Qi := yα
∂

∂yiα
, P ij :=

∂

∂yαi

∂

∂yjα
, Q̄i := ȳα̇

∂

∂ȳiα̇
, P̄ ij :=

∂

∂ȳiα̇
∂

∂ȳjα̇

The fundamental problem: find a proper class of functions F (Qi, Pnm; Q̄j, P̄ kl)

guaranteeing spin-locality (minimal non-locality) of the HS theory
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Spinor Spin-Locality

Polynomiality of F (Qi, P ij, Q̄j, P̄ kl) in either P ij or P̄ ij ∀i, j associated with

C

Restriction to the fixed spin relates the degrees in P ij and P̄ kl since

n−m = ±2s

Non-linear corrections can affect the relation between spinor and space-

time spin-locality making obscure the space-time interpretation of the

locality analysis in the spinor space.

This does not happen for projectively-compact spin-local vertices with

F (Qi, P ij, Q̄j, P̄ kl) = QωG(Qi, P ij, Q̄j, P̄ kl) + Q̄ωḠ(Qi, P ij, Q̄j, P̄ kl)

Qω and Q̄ω being associated with the one-forms ω among Φ.
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Projectiely-Compact Spin-Local Vertices

Using background frame eαβ̇ HS equations can be represented as

DLC(y, ȳ) = eαα̇
(
∂α∂̄α̇F

++(y, ȳ)+yα∂̄α̇F
−+(y, ȳ)+ȳα̇∂αF

+−(y, ȳ)+yαȳα̇F
−−(y, ȳ)

)
.

Generally, nonlinear corrections can contribute to any of F ab.

The contribution to F++ can be singled out by the projector

Πdes := N−1y N̄−1ȳ yαȳα̇
∂

∂eαα̇
, Ny := yα∂α , Nȳ := ȳα̇∂̄α̇

A spin-local vertex Υ is called projectively compact if ΠdesΥ is spin-local-

compact. In particular, if ΠdesΥ = 0.

The contribution of the projectively-compact spin-local vertices can

affect the expressions of the descendants in terms of derivatives of the

ground fields only by spin-local-compact terms that preserve space-time

locality of the vertex associated with the spin-local spinor vertex.
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Projectiely-Compact Spin-Local Vertices in dxC

The dxC vertex is 2017

Υ = Υη(e, C) +Υη̄(e, C)

Υη(e, C) =
1

2
η exp (iP̄1,2)

∫ 1

0
dτe(y, (1−τ)p̄1−τ p̄2)C(τy, ȳ;K)C(−(1−τ)y, ȳ;K) ,

Υη̄(e, C) =
1

2
η̄ exp i(P1,2)

∫ 1

0
dτe((1−τ)p1−τp2, ȳ)C(y, τ ȳ;K)C(y,−(1−τ)ȳ;K) ,

where e(a, ā) := eαα̇aαāα̇ .

Being non-polynomial either in P12 or in P̄12, Υ is spin-local

Since Υ contains either eαα̇yα or eαα̇ȳα̇,

ΠdesΥ = 0 ⇒ Υ is projectively-compact spin-local

PCSL vertices contain the minimal possible number of derivatives.
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Holographic Higher Spins

Sezgin-Sunell-Klebanov-Polyakov conjecture: HS theory in AdS4 is holo-

graphically dual to 3d vector model of scalar fields ϕi (i = 1 . . . N).

Sleight and Taronna argued 2017 that a HS theory resulting from holo-

graphic analysis based on the is essentially non-local

Since HS holography is a weak-weak duality, it should be possible to

test it.

No locality analysis of the full HS theory in AdS4 has been done except

for that of the Lebedev group Didenko, Gelfond, Korybut, MV 2017-2022

What has been shown so far indicates that HS theory is spin-local?!

Suggests gauged version of the SSKP conjecture with conformal HS

boundary theory MV 2012
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Conclusion

HS gauge theories contain gravity along with infinite towers of other

fields with various spins including ordinary matter fields: singlet scalar!

Infinite-dimensional HS symmetry

HS theories exist in various dimensions.

Unbroken HS symmetries demand AdS background

HS vertices contain higher derivatives.

Customary concepts of Riemann geometry are not applicable: study of

exact solutions is very instructive:

BH-like solutions Didenko, MV 2009, Iazeola, Sundell 2010

One of the central problems is the mechanism of

spontaneous breakdown of HS symmetries

HS holography is closely related with the locality properties of HS theory
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Concepts of compact and projectively-compact vertices are introduced.

These apply to various versions of HS theories.

For projectively-compact vertices spin-locality in the spinor space and

space-time are equivalent.

PCSL vertices are conjectured to form a proper class of solutions of the

non-linear HS equations that guarantee spin-locality of the HS theory

at higher orders.

Analysis of HS gauge theory has a potential to affect the paradigm of

holographic corresondence replacing the gauge-gravity correspondence

by the conformal gravity - gravity correspondence.
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