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Heavy ion collisions: why?

High temperature plasma – above 4 trillion Kelvin
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Heavy Ion Collisions

p-p collisions: ∼ 20 particles Au-Au collisions: ∼ 4800 particles

3 / 41



Magnetic fields in HIC

Non-central collisions: the strongest magnetic fields observed in the
laboratory (4 orders higher than the strongest magnetic field observed
in nature - magnetars).

D. Brandenburg et al, Eur. Phys. J. A,
57, 299 (2021).

First experimental observation corroborates value predicted 12 years
ago eB ≈ 1019G.
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The chiral magnetic effect

The chiral anomaly generates a flip of chirality when
chiral fermions interact with topologically non-trivial
gauge fields.

(NR−NL) = 2Nf Qw

[Kharzeev, McLerran and Warringa, NPA 803, 227 (2008).] Blue arrows denote spin and red arrows denote momentum.

▶ Effective description in terms of a chiral chemical potential:
Fukushima, Kharzeev and Warringa, PRD 85, 045104 (2008).

jz ∼∑
f

q2
f Bµ5 Independent of temperature and mass
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Why is it important?

▶ It sheds light on the quantum vacuum of the QCD: complex topo-
logical structure

▶ Sakharov conditions for baryogenesis:
▶ Baryon number violation
▶ C and CP violation
▶ Dynamics out of thermal equilibrium

▶ These currents are non-dissipative. They are time reversal sym-
metric: Ji = σBi .
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Isobar collisions

Isobar collisions: program dedicated to detect the CME did not find
the signal. New analysis considering multiplicity difference between the
isobars indicate a small signal.

We have a proposal to analyse the elements of the chiral magnetic
effect through other observables, but this is subject for another talk.
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Chiral magnetic effect observed in Dirac semimetals
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Chiral anomaly in 3D Dirac semi-metal ZrTe5

[Kharzeev,Li Nuclear Physics A, 956, 107]

JCME = e2

2π2 µ5B, µ5 ∼ E ·B

JCME ≡ σik
CMEEk , σzz

CME ∼ B2

[Li et al, Nature Phys. 12, 550 (2016).]

▶ The magnetoresistence in
ZrTe5 when a magnetic field is
applied parallel to an electric
field is in accordance with the
predictions for the CME.

After the first observation, the CME was detected in several other 3D
Dirac materials.

Could it replace superconductors in certain devices? Could it perform
at a higher temperature?
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Honeycomb lattices: is it possible to reproduce the CME in
two-dimensional materials?

▶ Represented in terms of two tri-
angular sublattices.

▶ Hexagonal reciprocal lattice.

▶ Tight-binding approach: nearest neighboors.

▶ Hopping only between sublattices.

▶ Linear dispersion relation: H =
ψ̄ ℏvF γγγ ·k ψ.

▶ Dirac points: valence and con-
duction band touch generating no
gap.
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Expanding around de K and K ′ points:

HK ′ (⃗q)≈ 3at
2

(
0 α(qx + iqy)

α∗(qx − iqy ) 0

)
, HK = H∗K ′ .

HK =−iℏvf σ⃗∇, H ′ = HT
K .

Considering the 4-component spinor:

H =

(
HK 0
0 H ′K

)
, HK = H∗K ′ , H =−iℏvτ0⊗ σ⃗∇.

In the continuous limit:

L = ∑σ=± ψ̄σ(t, r)
[
iℏγ0∂t + iℏvf γ

1Dx + iℏvf γ
2Dy

]
ψσ(t, r).

Chirality←→ Dirac point (valley)
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▶ Gaps between the conduction and valence band appear as a mass
term M̂ in the Lagrangian - interactions, deformations, substrates,
doping, etc.

▶ µ̂ is a generalized chemical potential including spin interaction
(Zeeman term), µσ = µ− σg

2µB
B.

▶ QED3 fermion sector (ℏ=c=1):

L = ψ̄[γ0(i∂0 + µ̂)− i(γγγ1Dx + γ2Dy)− M̂]ψ.
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Pseudo/Reduced QED

[Marino (1993); Gonzalez, Guinea, Vozmediano (1994); Gorbar, Guysinin, Miranski (2001).]

▶ The gauge sector is not constrained to the plane.

▶ Coulomb rather than logarithmic interaction.

▶ Reduced QED: general (3+1) theory dimensionally reduced to a
non-local effective (2+1) theory.

▶ D = 4→ Integrating over the gauge field and the third spatial di-
mension.

▶ Keeping J3 = 0.

▶ Adding the fermion fields in (2+1)D.

S =
∫

d3x

[
ψ̄
(
i /D+m

)
ψ+

1
2

Fµν

1√
−∂2

F µν +
1

e2ξ
∂µAµ 1√

−∂2
∂νAν

]
.
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Anomalous Quantum Hall Effect

[AJM, C. Villavicencio, D. Dudal, A. R. Rocha, F. Matusalém, Sci.Rep. 12 (2022) 1, 5439]

Linear response formalism: reaction of the system to external influ-
ences.

δS =
∫

d4xJµ(x)aµ(x) (1)

The conductivity is given by

σχ =− lim
ω→0

1
ℏω

Π̃xy
R

The polarization tensor is given by the diagram

We have shown that only 1-loop
contributions are non-vanishing:
Coleman-Hill theorem valid for RQED
[D. Dudal, AJM and P. Pais, PRD (2018)].
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The limit can only be taken if we consider a configuration of the mag-
netic field that implies an electric field when the limit ω→ 0 is taken.

Considering a chemical potential, we obtain for the net current

σχ = ∑
s

e2

4π

[
ms,k

|ms,k |
θ(m2

s,k −µ2)−
ms,k ′

|ms,k ′ |
θ(m2

s,k ′−µ2)

]

Quantum Hall Effect, with fractional Chern-number. TOPOLOGICALLY
PROTECTED!
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Spin flip causes a flip in the mass sign: we need a lift of spin degen-
eracy
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Physical meaning of the interactions

▶ Center symmetry breaking “mass”: M = m3γ3

▶ This can be obtained if sublattice symmetry is broken.

▶ Broken T symmetry: complex next to nearest neighbors term. In
the Lagrangian: M = m3γ3γ5. Spin orbit?

▶ Similar to the (3+1)D case, external electric and magnetic fields
(represented by a Chern-Simons term) can dynamically generate
Haldane mass in RQED. [J. Casimiro, L. Albino, AJM, A. Raya, Phys.Rev.D 102 (2020) 9, 096023]
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Ab Initio simulations (Filipe Matusalém)
We look for materials that can present an intrinsic effect.

Band structure of MnPX3, X = Se,Te

Doped with 1 Cu atom in order to generate a Zeeman effect and lift spin de-
generacy.

Other promising materials:

▶ Heterostructures: MnPSe3/CrBr3, MnPSe3/MoS2 and WS2/h-VN

▶ Dichalcogenides: NbSe2 and WS2
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Final remarks

▶ The chiral magnetic effect is an important anomalous transport effect that
may take place in the quark-gluon plasma and, besides sheding light on
the QCD vacuum structure, has deep implications for the early universe.

▶ It has been observed in condensed matter systems: three-dimensional
Dirac materials.

▶ Although the chiral magnetic effect is not allowed in two-dimensional ma-
terials, an analogue effect based on the parity anomaly is possible.

▶ Analogy depends on considering honeycomb lattice strictly 2D or quasi-
2D.

▶ First principle simulations are on the way: band structure, conductivity,
stability.

▶ Simulations to motivate experimental search.
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Heavy ion collisions: where?

• Relativistic Heavy Ion Collider - BNL (USA)

• Large Hadron Collider - CERN (Switzerland)

• Facility for Antiproton and Ion Research - GSI (Germany)

• Nuclotron-based Ion Collider fAcility - JINR (Russia)
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The chiral magnetic effect

Chirality: an intrinsic quantum number related to parity transformation
- mirror image. For massless particles chirality can be identified with
helicity.

How does it happen? Axial anomaly: imbalance of chirality

Topological invariant: Qw =
g2

32π2

∫
d4xF a

µνF̃ µν
a .

Non-conservation of axial
current:

∂µJ5
µ = 2∑

f
mf ⟨ψ̄f iγ5ψf ⟩A−

Nf g2

16π2 F a
µνF̃ µν

a .

The anomaly will affect the Ward identities of a quark interacting with a gauge field
and it is possible to relate the winding number with the eigenvalues of the equation of
motion.
Summing over the eigenvalues of the
chiral operator: (NR−NL) = 2Nf Qw .
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Pseudo-chirality: a physical quantity or an elegant
theoretical modeling?

▶ Chirality in odd dimensions: impossible to define a γ5 matrix com-
posed by the other matrices of the relevant group that anti-commute
with all of them.

▶ Mecklenburg and Regan: what if graphene is not so 2+1D? (PRL
106, 116803 (2011)).
• Consider a break of sublattice symmetry: the system is aware of

the z axis:

HK ′ (⃗q)≈ 3at
2

(
∆ α(qx + iqy)

α∗(qx − iqy) −∆

)
,

where ∆= εA− εB .

For this case an “extra” angular momentum is necessary in order to
commute with the Hamiltonian [H,L+S] = 0.
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Rotational invariance around the K points.

▶ Missing angular momentum: [H,L] ̸= 0 while the Hamiltonian has
rotational symmetry around the axis perpendicular to the graphene
plane.

▶ Possible to define a vector S analogous to spin collectively gener-
ated by the background lattice such that [H,L+S] = 0
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Photonic graphene with broken sublattice symmetry exhibits vortici-
ties that can be associated to an angular momentum of the pseudo-
spin. “Unveiling pseudospin and angular momentum in photonic
graphene” [Nature comm. 6, 6272 (2015)].

Two possible algebras for the pseudo-spin σ:

▶ Rotations in 3 spatial dimensions:
[Si ,Sj ] = iℏεijk Sk , {i, j,k} ∈ {1,2,3}

▶ 2 boosts and 1 rotation:
{γµ,γν}= 2gµν, {µ,ν} ∈ {0,1,2}

Honeycomb lattice as a strictly two dimensional structure, or as a quasi-
two dimensional structure embedded in three dimensional space?
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Honeycomb lattice as a (3+1)D system
AJM, S. Hernández-Ortiz, A. Raya and C. Villavicencio, Eur.Phys.J.C 78, 11 (2018).

▶ No dynamics in the third space coordinate.

▶ However there is interaction with the third component of the gauge
field.

▶ Interactions are chosen in a way to mimic chiral imbalance (this
will be clear in a moment.)

L = ψ̄[i/∂+µγ
0 +(eAext

3 −m3)γ
3−moγ

3
γ

5]ψ.

▶ This configuration preserves iso-flavor chiral symmetry.
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▶ In the chiral basis, we define: ψ± ≡ 1
2(1± γ5)ψ and m± = m3±m0:

L = ∑
χ=±

ψ̄χ

[
i/∂+µγ

0 +
(
eAext

3 −mχ

)]
ψχ.
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▶ Using the Schwinger proper time method:

G̃(k ;M±) = −i
∫

∞

0
ds e−sK∥

2−[k2+M±] tanh(eBs)/eB{
/K ∥

[
1−iγ2

γ
3 tanh(eBs)

]
−
[
k2γ

2+M±γ
3]sech2(eBs)

}
,

K∥ = (k0 +µ,k1,0)

▶ We calculate the currents at finite temperature:

Jµ(x) =−e⟨ψ̄γµψ⟩, Jµ5(x) =−e⟨ψ̄γµγ5ψ⟩

j(η)= 2
e2BT

2π
∑
n

∫
∞

−∞

ds rs(ωn,µ) (ωn− iµ)
[

tan(eBs)
eBs

]1/2

e−s(ω−iµ)2−eBη2
.
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▶ Only i = 1 component is non-vanishing.

Figure: L2
√

eB = 0.2
Figure: L2

√
eB = 8
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Electric current
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2
B

For |eB| ≪ (πT )2−µ2:

j(η) = e2B
2π

[nF (eBη−µ)−nF (eBη+µ)], where nF = (1+ex/T )−1.

For |eB| ≫ (πT )2−µ2:

j(η) = e2B√
|eB|

µ
π3/2 e−|eB|η2

.
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Density number
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For |eB| ≪ (πT )2−µ2:

ν(η) = eBη

π
T 2

[
|eBη|

T ln
(

1+e(|eBη|−µ)/T

1+e(|eBη|+µ)/T

)
+Li2

(
−e(|eBη|−µ)/T

)
+Li2

(
−e(|eBη|+µ)/T

)]
.

For |eB| ≫ (πT )2−µ2:

ν(η) =
√
|eB| µ

π3/2 e−|eB|η2
.

J1 = |e|sign(B)N5
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Linear response theory
The expectation value of the current to leading order in the gauge field

⟨j(t)⟩= i
ℏ
⟨0|t−infty dτ

[
∆H(τ),⃗ j(t)

]
|0⟩

⟨jx(t)⟩=
iB
ℏω
⟨0| i

∫ t

−∞

dτ[jy(τ), jx(t)] |0⟩cos(ωτ)

= Im
{

B
ℏω
⟨0| i

∫ t

−∞

dτ[jy(τ), jx(t)] |0⟩e−iωτ

}
.

After using time translational invariance, we get

⟨jx(t)⟩=
B
ℏω

Im
{

i
∫

∞

0
dτ

(
⟨0| [jy(0), jx(τ)] |0⟩eiωτ

)
e−iωt

}
,

from which the Kubo relation for the DC PME anomalous conductivity
follows as

σ = lim
ω→0

1
ℏω

Im
{

i
∫

∞

0
dτeiωτ ⟨0| [jy(0), jx(τ)] |0⟩

}
.
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Π̃ij (⃗p) =− m
|m|

e2

4π
θ(m2−µ2)εijk pk +O(p2),

The limits p0 = 0, p⃗→ 0 commute, and we get that

σ = − lim
ω→0

1
ℏω

Πyx

= lim
ω→0

1
ℏω

m
|m|

e2

4π
θ(m2−µ2)ε210ω

= − e2

4πℏ
m
|m|

θ(m2−µ2).
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Chiral chemical potential (Fermi liquid model)

[AJM, A. Raya and C. Villavicencio, hep/ph:1803.05794.]

L = ψ̄[i/∂+µγ0 +(eAext
3 −m3)γ

3−moγ3γ5]ψ.

Expanding around pχ =
√

µ2−m2
χ,

L = ∑
χ=±

ψ̄
′
χ

[
iγ0

∂0− vχγ ·∇
]

ψ
′
χ.
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Expanding around pχ =
mχv ′F√
1−v ′

2
F

,

L = ∑χ=± ψ̄′[iγ0∂0− v ′F γγγ ·∇∇∇+µ5γ0γ5]ψ
′
χ.

µ′ = µ− |m−|+ |m+|
2
√

1− v ′2F

µ5 =
|m−|− |m+|
2
√

1− v ′2F
,

Description in terms of the chiral chemical potential µ5.
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