20 years of a holographic formula

based on work over the years with H. Dorn, R. Aros, F. Bugini and S. Acevedo

Danilo E. Díaz
(Universidad Andrés Bello, Talcahuano, Bío-Bío)

$$
\text { Cosmology \& Particles, UBB, Sep. 12-14, } 2022
$$

Aim of the talk

Report a fruitful interplay AdS/CFT correspondence \Leftrightarrow Conformal Geometry/Spectral Theory

Aim of the talk

Report a fruitful interplay AdS/CFT correspondence \Leftrightarrow Conformal Geometry/Spectral Theory

- Holographic formula: a nostalgic overview

Aim of the talk

Report a fruitful interplay AdS/ CFT correspondence \Leftrightarrow Conformal Geometry/Spectral Theory

- Holographic formula: a nostalgic overview
- Gravity as a tool: one-loop partition functions and trace/Weyl/conformal anomalies

Plan

1. Maldacena's conjecture
2. Holographic Weyl anomaly
3. A subleading $\mathrm{O}(1)$ result
4. The holographic formula
5. Testing and tweaking
6. Outlook

Maldacena's conjecture

Maldacena's AdS = CFT

Realization of two deeply-rooted ideas in physics:
\{ the holographic principle [G.' t Hooft / L.Susskind] the string of the large-N gauge theory [G.'t Hooft]

Maldacena's AdS = CFT

Realization of two deeply-rooted ideas in physics:
$\left\{\begin{array}{l}\text { the holographic principle [G.'t Hooft / L. Susskind] } \\ \text { the string of the large-N gauge theory [G.'t Hooft] }\end{array}\right.$

Calculational prescription

Calculational prescription

String/M-theory: partition function

- $A d S_{d+1 \times} X$
- prescribed asymptotics at the conformal infinity
$C F T_{d}$: generating functional
- at conformal boundary
- gauge invariant single-trace composite operators

Calculational prescription

String/M-theory: partition function

- $A d S_{d+1 \times} X$
- prescribed asymptotics at the conformal infinity
$C F T_{d}$: generating functional
- at conformal boundary
- gauge invariant single-trace composite operators
- Most of the initial tests: class. SUGRA/ leading large-N regimes
- weak/strong duality: comparison with perturbative gauge regime only for protected quantities

Holographic Weyl anomaly

[Henningson+Skenderis'98]

Matching of trace anomaly

Bulk

- reconstruct a Poincare-Einstein metric from a given conformal infty
- $\frac{1}{G_{5}}(R-\Lambda)$ Volg $_{g}$, but infinite volume
* IR-UV connection [Susskind+Witten'98]

Boundary

- 1-loop effective potential (UV)
- QFT in curved spacetime: proper-time, heat-kernel, etc

Matching of trace anomaly

Bulk

- reconstruct a Poincare-Einstein metric from a given conformal infty
- $\frac{1}{G_{5}}(R-\Lambda)$ Volg $_{g}$, but infinite volume

Boundary

- 1-loop effective potential (UV)
- QFT in curved spacetime: proper-time, heat-kernel, etc
* IR-UV connection [Susskind+Witten'98]
* Math peeking around the corner: Q-curvature \{volume renormalization of asympt. hyperbolic manifolds $\} \rightleftharpoons\{$ ratio of determinants of conf. inv. Laplacians / gen. Polyakov f-las.\} [Branson, Fefferman+Graham, Graham+Zworski, etc]

Matching of trace anomaly

Bulk

- reconstruct a Poincare-Einstein metric from a given conformal infty
- $\frac{1}{G_{5}}(R-\Lambda)$ Volg $_{g}$, but infinite volume

Boundary

- 1-loop effective potential (UV)
- QFT in curved spacetime: proper-time, heat-kernel, etc
* IR-UV connection [Susskind+Witten'98]
* Math peeking around the corner: Q-curvature \{volume renormalization of asympt. hyperbolic manifolds $\} \rightleftharpoons\{$ ratio of determinants of conf. inv. Laplacians / gen. Polyakov f-las.\} [Branson, Fefferman+Graham, Graham+Zworski, etc]
$A d S_{5 \times S} S^{5}: \quad\left\langle T_{\text {ren } \mu}^{\mu}\right\rangle=\frac{c}{8 \pi^{2}}\left(R i c^{2}-\frac{1}{3} R^{2}\right) \quad c=\frac{N^{2}-1}{4}$

A subleading $\mathbf{O}(1)$ result

Beyond classical SUGRA:

* $\mathrm{O}(\mathrm{N})$: tree-level after inclusion of open or unoriented closed strings
\star O(1) taking $N^{2} \rightarrow N^{2}-1$: loop in SUGRA, but needs whole KK-towers and SUSY [Bilal+Chu'99, Mansfield+Nolland+Ueno'02]

Beyond classical SUGRA:

* $\mathrm{O}(\mathrm{N})$: tree-level after inclusion of open or unoriented closed strings
\star O(1) taking $N^{2} \rightarrow N^{2}-1$: loop in SUGRA, but needs whole KK-towers and SUSY [Bilal+Chu'99, Mansfield+Nolland+Ueno'02]
* Universal $\mathrm{O}(1)$ correction $c_{\alpha}-c_{\beta}$
[Gubser+Mitra'02/Gubser+Klebanov'02]:

Beyond classical SUGRA:

$\star \mathrm{O}(\mathrm{N})$: tree-level after inclusion of open or unoriented closed strings
\star O(1) taking $N^{2} \rightarrow N^{2}-1$: loop in SUGRA, but needs whole KK-towers and SUSY [Bilal+Chu'99, Mansfield+Nolland+Ueno'02]

* Universal $\mathrm{O}(1)$ correction $c_{\alpha}-c_{\beta}$
[Gubser+Mitra'02/Gubser+Klebanov'02]:

Bulk

- scalar $-\frac{d^{2}}{4}<m^{2}<-\frac{d^{2}}{4}+1$, two AdS-inv. quantizations
[Breitenlohner+Freedman' 82]
- generalized boundary condition $\alpha=\widetilde{f} \beta$: the only two conformal inv. choices $\widetilde{f}=0, \infty$

Boundary

- α / β-CFT: same hologram (but different asymptotics)
[Klebanov+Witten' 99]
- end points of RG-flow triggered by a relevant double-trace deformation $f O_{\alpha}^{2}$ of the α-CFT.
- Background solution has $\phi=0 \Rightarrow$ no effect on the classical SUGRA partition function
- But two AdS-invariant propagators $G_{\Delta_{ \pm}} \Rightarrow$ quantum fluctuations of ϕ are sensitive to the boundary conditions (\sim Casimir effect)

$$
Z_{\text {grav }}^{ \pm}=Z_{\text {grav }}^{\text {class }} \cdot\left[\operatorname{det}_{ \pm}\left(-\square+m^{2}\right)\right]^{-1 / 2}
$$

- The ratio $Z_{\text {grav }}^{+} / Z_{\text {grav }}^{-}$only contains the IR-divergence of the infinite AdS volume.

$$
e^{-\left(V^{+}-V^{-}\right) \cdot V o l(A d S)}
$$

- Background solution has $\phi=0 \Rightarrow$ no effect on the classical SUGRA partition function
- But two AdS-invariant propagators $G_{\Delta_{ \pm}} \Rightarrow$ quantum fluctuations of ϕ are sensitive to the boundary conditions (\sim Casimir effect)

$$
Z_{\text {grav }}^{ \pm}=Z_{\text {grav }}^{\text {class }} \cdot\left[\operatorname{det}_{ \pm}\left(-\square+m^{2}\right)\right]^{-1 / 2}
$$

- The ratio $Z_{\text {grav }}^{+} / Z_{\text {grav }}^{-}$only contains the IR-divergence of the infinite AdS volume.

$$
e^{-\left(V^{+}-V^{-}\right) \cdot V o l(A d S)}
$$

AdS prediction: $\mathrm{O}(1)$ correction to the holographic anomaly, polynomial in ν

Can this correction be reproduced on the boundary? YES!!!

- exploit the RG-flow picture: $f O_{\alpha}^{2}$
- Hubbard-Stratonovich transf. (auxiliary field trick)

$$
\left\langle e^{-\frac{f}{2} \int O_{\alpha}^{2}}\right\rangle \sim \int \mathcal{D} \sigma e^{\frac{1}{2 f} \int \sigma^{2}}\left\langle e^{\int \sigma O_{\alpha}}\right\rangle
$$

- large-N factorization

$$
\left\langle e^{\int \sigma O_{\alpha}}\right\rangle \approx e^{\frac{1}{2} \iint \sigma\left\langle O_{\alpha} O_{\alpha}\right\rangle \sigma}
$$

- fluct. det. of the auxiliary field: $\equiv \sim\left\langle O_{\alpha} O_{\alpha}\right\rangle$ as $f \rightarrow \infty$

$$
Z_{\beta}=Z_{\alpha} \cdot[\operatorname{det}(\equiv)]^{-1 / 2}
$$

Can this correction be reproduced on the boundary? YES!!!

- exploit the RG-flow picture: $f O_{\alpha}^{2}$
- Hubbard-Stratonovich transf. (auxiliary field trick)

$$
\left\langle e^{-\frac{f}{2} \int O_{\alpha}^{2}}\right\rangle \sim \int \mathcal{D} \sigma e^{\frac{1}{2 f} \int \sigma^{2}}\left\langle e^{\int \sigma O_{\alpha}}\right\rangle
$$

- large-N factorization

$$
\left\langle e^{\int \sigma O_{\alpha}}\right\rangle \approx e^{\frac{1}{2} \iint \sigma\left\langle O_{\alpha} O_{\alpha}\right\rangle \sigma}
$$

- fluct. det. of the auxiliary field: $\equiv \sim\left\langle O_{\alpha} O_{\alpha}\right\rangle$ as $f \rightarrow \infty$

$$
Z_{\beta}=Z_{\alpha} \cdot[\operatorname{det}(\equiv)]^{-1 / 2}
$$

CFT confirmation: $\mathrm{O}(1)$ correction to the trace anomaly ($\mathrm{d}=2,4,6,8$)

The holographic formula

Shortcomings and plan for amended version

1. Bulk: non-zero $V^{+}-V^{-}$for both even and odd d, but for odd d only via numerics [Hartman+Rastelli’ ${ }^{\prime}$ 6]
2. Confusion: for odd d, no anomaly in CFT vs. nonzero effective potential in the bulk
3. Boundary: overall coeff. of the anomaly? generic d ?
4. Beyond matching of anomaly?

Shortcomings and plan for amended version

1. Bulk: non-zero $V^{+}-V^{-}$for both even and odd d, but for odd d only via numerics [Hartman+Rastelli'06]
2. Confusion: for odd d, no anomaly in CFT vs. nonzero effective potential in the bulk
3. Boundary: overall coeff. of the anomaly? generic d ?
4. Beyond matching of anomaly?

Plan

- Bulk effective action: dimensional regularization (DR)
- Boundary fluctuation determinant: DR + Gauß's "proper-time"

Shortcomings and plan for amended version

1. Bulk: non-zero $V^{+}-V^{-}$for both even and odd d, but for odd d only via numerics [Hartman+Rastelli’ ${ }^{\prime}$]
2. Confusion: for odd d, no anomaly in CFT vs. nonzero effective potential in the bulk
3. Boundary: overall coeff. of the anomaly? generic d?
4. Beyond matching of anomaly?

Plan

- Bulk effective action: dimensional regularization (DR)
- Boundary fluctuation determinant: DR + Gauß's "proper-time"

$$
\text { AdS/CFT } \Rightarrow \quad \frac{\operatorname{det}_{+}\left(-\square+m^{2}\right)}{\operatorname{det}_{-}\left(-\square+m^{2}\right)} \quad \stackrel{?}{=} \quad \operatorname{det}\left\langle O_{\alpha} O_{\alpha}\right\rangle
$$

Testing and tweaking

Unknown to our contemporary conformal geometers? GJMS ops.

Continuation: $\Delta_{-} \rightarrow d / 2-k(k \in \mathbb{N}) \Rightarrow$ think of \equiv as inverse of k-th GJMS [Graham+Jenne+Mason+Sparling'91]

$$
P_{2 k}=\Delta^{k}+\angle O T
$$

Unknown to our contemporary conformal geometers? GJMS ops.

Continuation: $\Delta_{-} \rightarrow d / 2-k(k \in \mathbb{N}) \Rightarrow$ think of \equiv as inverse of k-th GJMS [Graham+Jenne+Mason+Sparling'91]

$$
P_{2 k}=\Delta^{k}+L O T
$$

d odd

d even

- Analogous result for $d+1$ even, for a generalized notion of determinant of GJMS [Guillarmou' 05]
- "The delicate case of $d+1$ odd where things do not renormalize correctly", is still to be understood!

We anticipated that a proper treatment in $d=$ even should unveil the Weyl anomaly.

Polyakov formulas for GJMS from AdS/CFT

Coefficient of the universal part (type A anomaly) of the Polyakov formulas, that agrees with the few ones known from heat kernel techniques.

Polyakov formulas for GJMS from AdS/CFT

Coefficient of the universal part (type A anomaly) of the Polyakov formulas, that agrees with the few ones known from heat kernel techniques.

a					
	$k=1$		$k=2$	$k=3$	
$n=2$	2	\checkmark	-	-	
$n=4$	$-4 / 3$	\checkmark	$112 / 3$	\checkmark	
$n=6$	$10 / 3$	\checkmark	$-64 / 3$	-	

- A compact formula in terms of Plancherel measure [DD'08,Dowker'10]
- The very same numbers found in recent years: log-term of the entanglement entropy for a massless free scalar through an even-sphere [Casini+Huerta'10]

Polyakov formulas for GJMS from AdS/CFT

Maybe more important, the two chief roles of the Q-curvature are connected for the first time: Branson vs. Fefferman+Graham.
(i) regularized volume in the ambient construction [Graham+Zworski' 01]
(ii) Polyakov f-la for GJMS [Branson' 93] ($d=2,4,6$ and conjecturally for all even)

Holographically induced Polyakov formulas:

$$
-\log \frac{\operatorname{det} \widehat{P_{2 k}}}{\operatorname{det} P_{2 k}}=a \int_{\mathcal{M}} w(\widehat{\mathbf{Q}}+\mathbf{Q})+\ldots
$$

Polyakov formulas for GJMS from AdS/CFT

Maybe more important, the two chief roles of the Q-curvature are connected for the first time: Branson vs. Fefferman+Graham.
(i) regularized volume in the ambient construction [Graham+Zworski' 01]
(ii) Polyakov f-la for GJMS [Branson' 93] ($d=2,4,6$ and conjecturally for all even)

Holographically induced Polyakov formulas:

$$
-\log \frac{\operatorname{det} \widehat{P_{2 k}}}{\operatorname{det} P_{2 k}}=a \int_{\mathcal{M}} w(\widehat{\mathbf{Q}}+\mathbf{Q})+\ldots
$$

* From renormalized volume and its conformal variation under $\widehat{g}=e^{2 w} g$

Polyakov formulas for GJMS from AdS/CFT

Maybe more important, the two chief roles of the Q-curvature are connected for the first time: Branson vs. Fefferman+Graham.
(i) regularized volume in the ambient construction [Graham+Zworski' 01]
(ii) Polyakov f-la for GJMS [Branson' 93] ($d=2,4,6$ and conjecturally for all even)

Holographically induced Polyakov formulas:

$$
-\log \frac{\operatorname{det} \widehat{P_{2 k}}}{\operatorname{det} P_{2 k}}=a \int_{\mathcal{M}} w(\widehat{\mathbf{Q}}+\mathbf{Q})+\ldots
$$

* From renormalized volume and its conformal variation under $\widehat{g}=e^{2 w} g$ [Chang+Qing+Yang'05], or alternatively, induced action for the conformal mode [Carlip'05, Aros+Romo+Zamorano'06], one gets the same structure!

Quotients $X=\Gamma \backslash$ AdS $_{n+1} \quad$ (e.g. thermal AdS and BTZ bh)

[DD'08,Aros+DD' 09]

Poincaré patch

$$
d s^{2}=\frac{d z^{2}+d \vec{x}^{2}}{z^{2}} \text { identification }(z, \vec{x}) \sim e^{\prime}(z, \mathbb{A} \vec{x})
$$

Gravity

- method of images
- in a nutshell, (Patterson-)Selberg zeta function Z_{Γ} [Patterson' 89]

CFT

- thermal correlator $\left\langle\left\langle O_{\lambda} O_{\lambda}\right\rangle\right\rangle$ at $T \sim 1 / I$, I
- read off from scattering in X [Perry+Williams'03]
- stationary Schrödinger in a Pöschl-Teller barrier

Quotients

$$
\left\{\frac{Z_{\Gamma}(n-\lambda)}{Z_{\Gamma}(\lambda)}\right\}^{2} \cdot \exp \left(\mathcal{A}_{n} \cdot \mathcal{V}\right)
$$

Quotients

$$
\left\{\frac{Z_{\Gamma}(n-\lambda)}{Z_{\Gamma}(\lambda)}\right\}^{2} \cdot \exp \left(\mathcal{A}_{n} \cdot \mathcal{V}\right)
$$

In particular, for 'resonant' values of the scaling dimension $\lambda \rightarrow 2$ in two dimensions: the celebrated determinant of the Laplacian on the torus
[Ray+Singer'73,Polchinski' 86]

Higher spins

Bulk $A^{\prime} S_{\text {odd }}$ [Giombi+Klebanov+Pufu+Safdi+Tarnopolsky'13]

- Holographic derivation of the type-A trace anomaly coefficient of Fradkin-Tseytlin Conformal Higher Spins

Higher spins

Bulk $A d S_{\text {odd }}$ [Giombi+Klebanov+Pufu+Safdi+Tarnopolsky'13]

- Holographic derivation of the type-A trace anomaly coefficient of Fradkin-Tseytlin Conformal Higher Spins

Boundary Einstein [Tseytlin'13]

- Heat-kernel confirmation of the type-A trace anomaly coefficient

Higher spins

Bulk AdS odd [Giombi+Klebanov+Pufu+Safdi+Tarnopolsky'13]

- Holographic derivation of the type-A trace anomaly coefficient of Fradkin-Tseytlin Conformal Higher Spins

Boundary Einstein [Tseytlin'13]

- Heat-kernel confirmation of the type-A trace anomaly coefficient
- Heat-kernel derivation of the type-B trace anomaly coefficient(s): remained holographically unaccounted for

Higher spins: building blocks

[Acevedo+Aros+Bugini+DD'17,Aros+Bugini+DD'19'21'22]

$$
\frac{\operatorname{det}_{-, T T}\left\{\hat{\Delta}_{L}^{(s)}+s(n+s-2)-\frac{n^{2}}{4}+k^{2}\right\}}{\operatorname{det}_{+, T T}\left\{\hat{\Delta}_{L}^{(s)}+s(n+s-2)-\frac{n^{2}}{4}+k^{2}\right\}}=\operatorname{det}_{T T} P_{2 k}^{(s)} \cdot \ldots \cdot \operatorname{det} P_{2 k}^{(0)}
$$

Higher spins: building blocks

```
[Acevedo+Aros+Bugini+DD'17,Aros+Bugini+DD'19'21'22]
```

$$
\frac{\operatorname{det}_{-, T T}\left\{\hat{\Delta}_{L}^{(s)}+s(n+s-2)-\frac{n^{2}}{4}+k^{2}\right\}}{\operatorname{det}_{+, T T}\left\{\hat{\Delta}_{L}^{(s)}+s(n+s-2)-\frac{n^{2}}{4}+k^{2}\right\}}=\operatorname{det}_{T T} P_{2 k}^{(s)} \cdot \ldots \cdot \operatorname{det} P_{2 k}^{(0)}
$$

Three key ingredients:

- Simple holographic recipe to read off type-B anomaly [Bugini+DD'16].
- Extrapolation of b_{6} heat coefficient, recently computed by [Liu+McPeak'18]
- WKB-exactness of the heat-kernel for tranverse-traceless totally symmetric rank-s tensors.

Outlook

Summary

- "It is very likely that the holographic formula is right"

Summary

- "It is very likely that the holographic formula is right"

Many Thanks For Your Attention ¡GRACIAS!

