

Recent Results from NEWS-G

P. Knights

University of Birmingham, UK

p.r.knights@bham.ac.uk

P Knights - DMUK, Imperial College London, UK

The Search for Light Dark Matter

Rept.Prog.Phys. 85 (2022) 5, 056201

P Knights - NEWS-G - DMUK, 2022

The Search for Light Dark Matter

Rept.Prog.Phys. 85 (2022) 5, 056201

P Knights - NEWS-G - DMUK, 2022

The Search for Light Dark Matter

 10^{-32}

 10^{-34}

 10^{-36}

 10^{-38}

 10^{-40}

 10^{-42}

10⁻⁴⁴

 10^{-46}

 10^{-48}

10⁻⁵⁰ Ш

Cross

- Light DM region has attracted theoretical interest
- Exploring light DM with nuclear recoils requires:
 - Low energy threshold
 - •Low-mass target nuclei

0.1

<u>Rept.Prog.Phys. 85 (2022) 5, 056201</u>

P Knights - NEWS-G - DMUK, 2022

NEWS-G

Vew

New Experiments With Spheres - Gas Light DM searches with a novel gaseous detector, the spherical proportional counter

Science and Technology **Facilities Council**

Boulby Underground Laboratory

UNIVERSITY^{OF} BIRMINGHAM

%TRIUMF

22/09/2022

P Knights - NEWS-G - DMUK, 2022

- Simplest form: ~ mm ball in a ~0.1-1 m spherical shell Ideal electric field varies as 1/r²
 - Naturally divides detector: drift and avalanche regions

JINST 15 (2020) 06, C06013

- Simplest form: ~ mm ball in a ~0.1-1 m spherical shell
 Ideal electric field varies as 1/r²
 - Naturally divides detector: drift and avalanche regions

- Simplest form: ~ mm ball in a ~0.1-1 m spherical shell Ideal electric field varies as 1/r²
 - Naturally divides detector: drift and avalanche regions

- Kinematic match to light-DM

- Simplest form: ~ mm ball in a ~0.1-1 m spherical shell
- Ideal electric field varies as 1/r²
- Naturally divides detector: drift and avalanche regions

Vew

- Kinematic match to light-DM

SNOGLOBE

- New ø140 cm detector
- 4N (99.99% pure) Aurubis copper

Vew

- Constructed and tested in LSM, France
- Now being commissioned in SNOLAB, Canada

BIRMINGHAM

More info in recent article: arXiv 2205.15433

P Knights - NEWS-G - DMUK, 2022

SNOGLOBE

- New ø140 cm detector
- 4N (99.99% pure) Aurubis copper

(Vew)

BIRMINGHAM

In LSM

P Knights - NEWS-G - DMUK, 2022

SNOGLOBE

- New ø140 cm detector
- 4N (99.99% pure) Aurubis copper

(Vew)

- Now being commissioned in SNOLAB, Canada

BIRMINGHAM

Location in SNOLAB

P Knights - NEWS-G - DMUK, 2022

SNOGLOBE in LSM

- Constructed and first operated in LSM
- Initial commissioning data taking in LSM
 - •UV Laser and ³⁷Ar calibration systems
 - Multi-anode sensor ACHINOS
- Temporary lead + water shielding installed end 2019
- ~10 days of commissioning data taken
 - •135 mbar of CH₄ (~100g)

P Knights - NEWS-G - DMUK, 2022

SNOGLOBE in LSM

- Constructed and first operated in LSM Initial commissioning data taking in LSM
 - •UV Laser and ³⁷Ar calibration systems
 - Multi-anode sensor ACHINOS
- Temporary lead + water shielding installed end 2019
- ~10 days of commissioning data taken •135 mbar of CH₄ (~100g)

P Knights - NEWS-G - DMUK, 2022

ACHINOS

- Single anode: gain and drift fields coupled
- Idea: Multiple anodes located at same distance from centre of detector Gain and drift decoupled
 - Drift field determined by collective field of all anodes •Gain determined by individual anode
- Currently, read out as 2-channels, near and far
- Observe the expected induced signal on other channel when electrons arrive exclusively to other

P Knights - NEWS-G - DMUK, 2022

Electron Counting

- After pulse treatment, resolve primary electrons
 - Diffusion $O(100 \ \mu s)$ in commissioning data
 - If >1e, time separation surface/volume discrimination

UV 231 nm laser for continuous detector monitoring
 Drift time, gain, efficiencies etc.

- ³⁷Ar at end of data taking
 - Gain measurements
 - W-value and Fano
 - Electron attachment

Commissioning Data

Data divided into 2/3/4 peak

Vew

BIRMINGHAM

Principle discriminating variable: time separation Surface/volume and coincidence discrimination

2 peaks

P Knights - NEWS-G - DMUK, 2022

Only test data analysed so far: ~30% data Remaining data is blind

No significant DM signal observed

4 peaks

LSM Physics Result

- Results with 0.12 kg·days test data
- Combination of W-value and Comimac QF used
- Conservative logarithmic extrapolation
- Profile likelihood ratio method used to calculate 90% exclusion limit
- Full results with blind data expected within weeks - potential for best constraints on **SD-p DM interactions below 1 GeV!**

New Result!

P Knights - NEWS-G - DMUK, 2022

SNOGLOBE in **SNOLAB**

Now in commissioning in SNOLAB

UNIVERSITY^{of} BIRMINGHAM

P Knights - NEWS-G - DMUK, 2022

22/09/2022

11

SNOGLOBE in **SNOLAB**

Now in commissioning in SNOLAB

UNIVERSITY^{of} BIRMINGHAM

P Knights - NEWS-G - DMUK, 2022

22/09/2022

11

Future Detectors

- Dominant BG: Radioactivity and activation of copper Idea: Use deep-underground, intact, electroformed detectors
- ECuME (SNOLAB): Ø140cm SPC, to be installed in SNOGLOBE's shield Future: DarkSPHERE
 - •ø3m SPC with water-based shielding to minimise BG from environment

P Knights - NEWS-G - DMUK, 2022

Summary

- SNOGLOBE: 140cm SPC
 - Commissioned and initially operated in LSM
- Commissioning data ~10 days with 135 mbar CH₄
- Only analysed ~30% data
 - expected to place world-leading limit on SD-p
- Data taking commencing in SNOLAB
- R&D an plans for future detectors ongoing

P Knights - NEWS-G - DMUK, 2022

22/09/2022

WIMP exclusion limit (S140@LSM, 135mbar CH4)

Neutron Measurements and ACHINOS N₂ filled SPC as neutron detector - See I. Manthos talk at last DMUK

- (n,α) and (n,p) reactions, exo- and endothermic
- Sensitivity to thermal and fast neutrons
- Recent paper, under review <u>2206.04331</u>

Vew

 \bullet and p discrimination would allow fast/thermal discrimination Highlighted anode with different gain for this particular ACHINOS Both could be addressed with individual anode read-out

P Knights - NEWS-G - DMUK, 2022

Individual Anode Read-Out

- Work underway to individually read out the 11 anodes •Custom-built preamplifier boxes (design, U. Of Bordeaux) built in-house, using CREMAT CR110
- Data with 200 mbar Ar:CH₄ (2%) and ²¹⁰Po α
 - • α ~15 cm range
 - •See 'tracks' where multiple anodes collect electrons
 - •See induced signal on other anodes (negative)
- Work ongoing, but stay tuned!

UNIVERSITYOF BIRMINGHAM

P Knights - NEWS-G - DMUK, 2022

Additional Slides

P Knights - NEWS-G - DMUK, 2022

Quenching Factor Measurements: TUNL

Neutron scattering-induced nuclear recoils in SPC \rightarrow compare to calibration

- 2 measurement approaches
 - Neutron scattering at TUNL
 - Electron/Ion beam, COMIMAC, at Grenoble

Quenching Factor Measurements: TUNL

Neutron scattering-induced nuclear recoils in SPC \rightarrow compare to calibration

Pb

Quenching Factor Measurements: TUNL

Neutron scattering-induced nuclear recoils in SPC \rightarrow compare to calibration

Pb

Electrons and ions directed into SPC \rightarrow compare response

P Knights - NEWS-G - DMUK, 2022

Quenching Factor Estimates: W-Values

- W-value: Average energy required to produce electron-ion pair
- W different for electrons and ions, and varies with energy Difference is quantified by QF
- W of electrons and ions in gases prev. studied for dosimetry
 - Comparing asymptotic electron W-value and W(E) for ions, get QF

Quenching Factor Estimates: W-Values

- W-value: Average energy required to produce electron-ion pair
- W different for electrons and ions, and varies with energy Difference is quantified by QF
- W of electrons and ions in gases prev. studied for dosimetry
 - Comparing asymptotic electron W-value and W(E) for ions, get QF

Gas	W	V [eV]
	ICRU	Asym
H_2	36.5 ± 0.7	38.0
CH_4	$27.3{\pm}0.6$	27.90
N_2	$34.8{\pm}0.7$	34.91
Ar	$26.4{\pm}0.5$	28.5
CO_2	$33.0{\pm}0.7$	33.02
$\mathrm{C}_3\mathrm{H}_8$	$24.0{\pm}0.5$	26.4

Quenching Factor Estimates: W-Values

- W-value: Average energy required to produce electron-ion pair
- W different for electrons and ions, and varies with energy Difference is quantified by QF
- W of electrons and ions in gases prev. studied for dosimetry
 - Comparing asymptotic electron W-value and W(E) for ions, get QF

BIRMINGHAM

W [eV]Gas ICRU 36.5 ± 0.7 H_2 CH_4 $27.3 \pm 0.6\ 27.90 \pm\ 0.01$ 34.8 ± 0.7 34.91 ± 0.17 N_2 26.4 ± 0.5 Ar $CO_2 \quad 33.0 \pm 0.7 \quad 33.02 \pm 0.12$ $C_{3}H_{8}$ 24.0±0.5

P Knights - NEWS-G - DMUK, 2022

Quenching Factor

Quenching Factor of H in CH4

	 Combination of W-value and QF used Use conservative logarithmic extrapolation
 QF from Lindhard QF from SRIM QF from W ratios QF from Comimac Lindhard-like extrapolation Logarithmic extrapolation 10¹ ar recoil energy [keVr] 	2

Shielding & Backgrounds

- Available space in Boulby LEC: 8 x 8 x 8 m³
- Conceptual shielding extensively studied in Geant4 with G4RadioactiveDecayPhysics
 - Several designs explored
- Found water-only achieves desired BG suppression
 - Dominant background is from photons from cavern
- Shielding material and copper (~10⁻⁵dru) contributions are subdominant

P Knights - NEWS-G - DMUK, 2022

Large Experimental Cavern (LEC)

Read-Out and Calibration

- Larger detector requires larger ACHINOS
- First simulations performed with crude 60-anode ACHINOS
 - Anodes at vertices of truncated icosahedron (a football)
 - Use full simulation framework
- Also intend use laser calibration in DarkSPHERE

Event Localisation

Currently exploring event localisation capability of higher-anode achinos in simulation Provide additional BG rejection handles (track/point-like, position dependent etc.)

60-anode ACHINOS, individual read-out

Nuclear-Recoil DM Searches

P Knights - NEWS-G - DMUK, 2022

Electron-Recoil DM Searches

Heavy DM Searches and Other Applications

- Looking for multiply interacting DM in the detector
 Sensitivity scales with detector radius
- Potential for a multi-physics platform:
 - •0vββ (R2D2)
 - ¹³⁶Xe at 5 bar in DarkSPHERE would detect ~ $5 \times (10 \text{ kpc/d}_{SN})^2$ events for supernova at distance d_{SN}, assuming a $27M_{\odot}$
 - progenitor [C McCabe, L. Hamaide]

Boulby Electroforming Facility

- STFC Early Technology Development Capital Funding bid to establish deep-underground EFCu facility in Boulby successful Modelled after ECuME facility
 - Input from NEWS-G and PNNL
- Delivery of components ongoing!
- Boulby acquiring Type1 water facility

Unfortunately, just 4N5 Cu rods, not dark matter

P Knights - NEWS-G - DMUK, 2022

XIA UltraLo-1800 https://www.xia.com/ultralo-theory.html

Commercial copper has two primary contamination sources: Fast neutrons from cosmic muon spallation e.g. $^{63}Cu(n,\alpha)^{60}Co$ Mitigation: minimise time outside underground laboratory ²³⁸U and ²³²Th decay chains naturally found in raw material Assay: ICP-MS ~10 µBq/kg

Long-lived ²³⁸U daughters introduced by ²²²Rn gas •²¹⁰Pb is long-lived, so builds up, and leads to break in secular equilibrium of chain

Assay: alpha-counter, UltraLo-1800 ~30 mBq/kg

XIA UltraLo-1800 https://www.xia.com/ultralo-theory.html

Commercial copper has two primary contamination sources: Fast neutrons from cosmic muon spallation e.g. $^{63}Cu(n,\alpha)^{60}Co$ Mitigation: minimise time outside underground laboratory ²³⁸U and ²³²Th decay chains naturally found in raw material Assay: ICP-MS ~10 µBq/kg

Long-lived ²³⁸U daughters introduced by ²²²Rn gas • ²¹⁰Pb is long-lived, so builds up, and leads to break in secular equilibrium of chain

Assay: alpha-counter, UltraLo-1800 ~30 mBq/kg

Commercial copper has two primary contamination sources: Fast neutrons from cosmic muon spallation e.g. $^{63}Cu(n,\alpha)^{60}Co$ Mitigation: minimise time outside underground laboratory ²³⁸U and ²³²Th decay chains naturally found in raw material Assay: ICP-MS ~10 µBq/kg

Long-lived ²³⁸U daughters introduced by ²²²Rn gas • ²¹⁰Pb is long-lived, so builds up, and leads to break in secular equilibrium of chain

Assay: alpha-counter, UltraLo-1800 ~30 mBq/kg

Ultra-Pure Copper Electroplating

- Exploits electrochemical properties
 - Cu Preferentially deposited
- **500 µm electroplated layer** on detector inner surface Background reduction by factor 2.6 <1 keV (Geant4)</p>
- Copper deposition rate ~36 µm/day
 - Could electroform complete detector
- ICP-MS assay of sample comparable to other EF copper
 - ²¹⁰Po in other EF copper below XIA UltraLo-1800 sensitivity <3 mBq/kg

UNIVERSITYOF BIRMINGHAM

Ultra-Pure Copper Electroplating

- Exploits electrochemical properties
 - Cu Preferentially deposited
- **500 µm electroplated layer** on detector inner surface Background reduction by factor 2.6 <1 keV (Geant4)</p>
- Copper deposition rate ~36 µm/day
 - Could electroform complete detector
- ICP-MS assay of sample comparable to other EF copper
 - ²¹⁰Po in other EF copper below XIA UltraLo-1800 sensitivity <3 mBq/kg

UNIVERSITYOF BIRMINGHAM

Sample	Weight	232 Th	238 U
	[g]	$[\mu Bq kg^{-1}]$	[µB
C10100 Cu	_	8.7 ± 1.6	27.9
(Machined)			
Cu Electroformed	-	< 0.119	<0.
Hemisphere 1	0.256	< 0.58	< 0.
Hemisphere 2	0.614	< 0.24	<0.

Nuclear Inst. and Methods in Physics Research, A 988 (2021) 164844

ICP-MS Assay

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Copper electroplating for background suppression in the NEWS-G experiment

L. Balogh^a, C. Beaufort^b, A. Brossard^a, R. Bunker^c, J.-F. Caron^a, M. Chapellier^a, J.-M. Coquillat^a, E.C. Corcoran^d, S. Crawford^a, A. Dastgheibi Fard^b, Y. Deng^e, K. Dering^a, D. Durnford^e, G. Gerbier^a, I. Giomataris^f, G. Giroux^a, P. Gorel^{g,h,i}, M. Gros^f, P. Gros^a, O. Guillaudin^b, E.W. Hoppe^c, I. Katsioulas^j, F. Kelly^d, P. Knights^{f,j,*}, L. Kwon^d, S. Langrock^h P. Lautridou^k, R.D. Martin^a, J.-P. Mols^f, J.-F. Muraz^b, X.-F. Navick^f, T. Neep^j, K. Nikolopoulos^j, P. O'Brien^e, R. Owen^j, M.-C. Piro^e, D. Santos^b, G. Savvidis^a, I. Savvidis¹, F. Vazquez de Sola Fernandez^a, M. Vidal^a, R. Ward^j, M. Zampaolo^b

(NEWS-G Collaboration)

S. Alcantar Anguiano^c, I.J. Arnquist^c, M.L. di Vacri^c, K. Harouaka^c, K. Kobayashi^{m,n,1}, K.S. Thommasson

- ^a Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canad
- ¹ LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
- hemistry & Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada ment of Physics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ⁸ Department of Physics and Astronomy, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
- SNOLAB, Lively, Ontario, P3Y 1N2, Canada
- Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom ^k SUBATECH, IMT-Atlantique, Université de Nantes/IN2P3-CNRS, Nantes, France
- Aristotle University of Thessaloniki, Thessaloniki, Greece
- ^m Kamioka Observatory, ICRR, University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, Japan
- ^a Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

<u>NIMA 988 (2021) 164844</u>

P Knights - NEWS-G - DMUK, 2022

- Lots of information in a pulse. e.g. in rise time
- rise time/width

P Knights - NEWS-G - DMUK, 2022

Background Contributions to SNOGLOBE

	Source	Contamination / flux	Unit	Events rate <1 keV [dru]	Events rate in [1;5] keV [dru]	Total rate [mHz]
Gas	^{3}H	13	$\mu Bq/kg$	0.05	0.06	0.005
mixture	222 Rn	111	$\mu Bq/kg$	0.05	0.04	0.2
	²¹⁰ Pb	28.5	mBq/kg	1.04	1.01	0.86
Copper sphere	²³⁸ U	3	$\mu Bq/kg$	0.0117	0.115	0.028
500 μm electrolyte	²³² Th	13	$\mu Bq/kg$	0.0754	0.0692	0.163
	^{40}K	0.1	mBq/kg	0.0157	0.0186	0.0622
Roman lead 23 40	²¹⁰ Pb	<25	mBq/kg	< 0.14	< 0.12	0.057
	²³⁸ U	44.5	$\mu Bq/kg$	0.142	0.094	0.277
	²³² Th	9.1	$\mu Bq/kg$	0.0256	0.0161	0.0577
	⁴⁰ K	<1.3	mBq/kg	< 0.28	0.23	0.65
Low activity lead	²¹⁰ Pb	4.6	Bq/kg	0.053	0.055	0.17
	²³⁸ U	79	$\mu Bq/kg$	0.17	0.132	0.5
	²³² Th	9	$\mu Bq/kg$	0.0251	0.0201	0.075
	^{40}K	<1.46	mBq/kg	< 0.35	0.26	0.67
Cavern N	Gamma	4.87×10^{-8}	$\gamma/cm^2/s$	0.0084	0.0095	0.00464
	Neutron	4000	neutron/m ² /day	0.0044	0.0004	3.54×10^{-11}
	Muon	0.27	muon/m ² /day	0.00062	0.00044	5.04×10^{-8}
Total			1.67	1.54	2.4	
Total + cosmogenic activation of the copper sphere			5.20	5.20	5.4	
Total + cosmogenic activation of the copper sphere and 6 months of cooling			2.8	2.5	3.4	
Total + cosmogenic activation of the copper sphere and 1 years of cooling			2.1	1.9	3.0	
Total + cosmogenic activation of the copper sphere and 2 years of cooling			1.9	1.7	2.9	

Table 5.6: Summary of the main background of NEWS-G at SNOLAB, without rise time selection. The upper limits of activities in the lead are not taking into account in the total.

From A. Brossard, Ph. D. Thesis

