

Quantum Sensors for the Hidden Sector

DMUK Meeting, 22nd September 2022

Ed Daw, The University of Sheffield, for the Quantum Sensors for the Hidden Sector Collaboration

Axions and the Strong CP problem

Standard model symmetry group is $SU(3) \times SU(2) \times U(1)$

$$\mathcal{L}_{\rm CPV} = \frac{(\Theta + \arg \det M)}{32\pi^2} \vec{E}_{\rm QCD} \cdot \vec{B}_{\rm QCD} \qquad \begin{array}{c} \text{NON-ABELIAN} & \text{NON-ABELIAN} & \text{ABELIAN} \\ \end{array}$$

Evidence for CP conservation in the SU(3) strong interactions from multiple measurements of neutron and nuclear electric dipole moments. For example, neutron EDM < 10^{-26} e-cm.

Even simple dimensional arguments show that this is unexpected. Why do the SU(3) QCD interactions conserve CP when SU(2) QED interactions do not? This is the strong CP problem.

Signal-to-noise-ratio

Theoretical signal power for KSVZ axions in ADMX

$$P = 1.52 \times 10^{-21} \,\mathrm{W} \,\mathrm{f}_{\mathrm{nlm}} \left(\frac{B}{7.6 \,T}\right)^2 \left(\frac{V}{220 \,\mathrm{litres}}\right) \left(\frac{g_{\gamma}}{0.97}\right)^2 \\ \times \left(\frac{\rho_a}{0.45 \,\mathrm{GeV} \,\mathrm{cm}^{-3}}\right) \left(\frac{f}{750 \,\mathrm{MHz}}\right) \left(\frac{Q}{70,000}\right).$$

Signal power divides by 2 as half of the power from axion to photon conversion deposited in the amplifier

Noise power for thermalised axions at 700MHz, 500 Hz bandwidth $P_N = k_B T_S B$ $= 1.4 \times 10^{-23} [J K^{-1}] \times 4[k] \times 500 [Hz]$ $= 2.8 \times 10^{-20} W$ $\frac{P}{2P_N} = \frac{1}{37}$

The Radiometer Equation.

The radiometer equation is useful here because the signal is at a static frequency, and the noise at surrounding frequencies is relatively flat (because the cavity resonance is much wider band than the signal peak). Thus the signal appears as *excess power* in its bandwidth on top of the noise power that is in every bin.

Whether the signal is discernible or not depends on whether the bin-to-bin fluctuations in the how long you have to integrate for to discern the signal against the background of these fluctuations.

- Non resonant experiments have broad mass coverage, but insensitive to QCD axions
- Resonant experiments much more sensitive. ADMX is the only experiment to have probed a broad range of existing axion models. However, mass coverage too slow. Can speed up: 1. By using a new generation of quantum electronics; 2. By using a larger, higher field magnet; 3. Using multiple resonators in parallel.

QSHS Discovery Potential Measure for Resonant Detectors

Figure of merit for $\frac{B^2V}{T}$ sensitivity:

— Energy stored in magnetic field

 System noise temperature, proportional to energy per oscillator mode in thermal equilibrium

Experiment	B ² V / T
ADMX (US)	47
HAYSTAC (US)	0.33
CAPP-PACE (S. Korea)	0.36
CAPP-18T	0.36
CAPP-12TB	43
QSHS-SHEFFIELD PROTOTYPE	20
QSHS-UK FACILITY (proposed)	5000

Josephson parametric amplifiers (JPAa) / Travelling wave parametric amplifiers (TWPAs)

Cryogenic bolometer arrays UNIVERSITY OF CAMBRIDGE

Qubit arrays

SQUID loop

.

Resonant Feedback

Nuclear Inst. and Methods in Physics Research, A, Volume 921, p. 50-56. https://arxiv.org/abs/1805.11523

Future Plans

- Install and commission fridge and magnet at Sheffield
- Run 1 with a single cavity at around 5GHz, first untuned, then QSHS Phase 1 with a tuning rod. Start with a HEMT amplifier. (current Establish sensitivity to axion dark matter, extrapoloate to STFC Support) projected sensitivity at lower noise, larger volume. Develop 4 varieties of quantum electronics. Deploy and test Quantum Electronics maybe • Run 2, with quantum electronics, measure revised noise during phase 1 temperature, search for axions, again around 5GHz. Develop and test resonant feedback and improved
- QSHS phase 2 requires support.
- resonators in collaboration with ADMX.
- Study possible cosmic ray backgrounds.
 - Engineering design for a UK scaled up national facility.