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MIGDAL data analysis workshop at RAL, 11-13 September 2022
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15 in-person participants from UK, Portugal
and US plus 3 on zoom from Spain, US and
CERN.

In the lab showing how MIGDAL O-TPC works



Migdal effect .
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Migdal event topology involves a nuclear recoil and
electron recoil originating from the same vertex.

e Looking for a rare (107°) atomic phenomenon never before observed in the
nuclear scattering
e Migdal effect increases sensitivity of DM experiments to low mass WIMPs

e Aim of the MIGDAL experiment - unambiguous observation and measurement
of the Migdal effect using a low pressure Optical TPC

e Signal signature: “V-like” shaped event with two tracks from electron and NR
with different dE/dx and sharing the same vertex



What do we already know about the Migdal effect ?

JOURNAL of PHYSICS 1941

TONIZATION OF ATOMS ACCOMPANYING o- and §-DECAY
By A. MIGDAL
(Recsived November 15, 1040)
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A. Migdal publications:

lonisation in nuclear reactions [1]

lonisation in radioactive decays [2]

First observations of the Migdal effect in :

Alpha decay [3,4]
Beta decay [9]
Positron decay [6]

Nuclear scattering [ ]

[5] C. Couratin et al., First Measurement of Pure Electron Shakeoff in the 3 Decay of Trapped ®He*lons, PRL 108, 243201 (2012)

[6] X. Fabian et al., Electron Shakeoff following the B* decay of Trapped *°Ne* and **Ar* trapped ions, PRA, 97, 023402 (2018)

Also in A.B. Migdal "Qualitative Methods in Quantum Theory”
Advanced Book Classics CRC Press, 2000

L. Landau and E. Lifshitz "Quantum Mechanics : Non-relativistic Theory”




dE/dx and required dynamic range
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Distinctive difference in
dE/dx between NRs and
electrons

Huge dynamic range
required at vertex where
dE/dx at maximum for NRs
and at minimum for electrons

With high gain to see low
energy electrons can lead to
approaching the Raether
limit and unwanted gaseous
discharges in the lower GEM

Plan for testing different
THGEMSs structures for
robustness with fission
fragments (RD-51 2 year
grant)



Detector

Copper collimator
for DT generator

e Gas:100% CF, at 50 Torr
o  (planned mixtures with all noble gases)
e Operating with low drift E-field for minimum diffusion

e Signal amplification with two glass-GEMs

TPC:

ITO plate, 2 x Glass GEM, Cathode mesh

Camera:
Hamamatsu Orca-Fusion
PMT
Collimated
Neutron beam
= =

e Light readout with fast CMOS camera: 2300 px x 2300 px, 89 frames/s and 25 mm f 0.85 EHD Imaging lens

e Charge readout using ITO strips, trigger from Hamamatsu PMT R11410



End-to-end simulation of Migdal events in 100% CF, at 50 Torr
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Including electronics response

e |onisation from electron using DEGRAD and full recoil cascade simulation using TRIM

e 150 keV Fluorine recoils and 5 keV electron (secondary recoil clearly visible)




Two glass-GEMs:

- 570 um thick

- OD /pitch:
180/280 um

- active area:
10x10 cm?

ITO strips wire
" bonded to readout

- 120 strips
- width/pitch:
0.65/0.83 mm

| Three field shaping
| copper wires

TPC inside of the central aluminium cube

Drift gap: 3 cm between woven mesh and cascade of two glass-GEMs

Transfer and signal induction gaps : 2 mm

Low outgassing materials; vacuum before fill 2*10-6 mbar; signal visible several days after the fill s



TPC
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Electric field uniformity in the active volume simulated with COMSOL : fiducial area 8 cm x 8 cm



Gas system for single or two gases mixture operation
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e Detector performance
o Low outgassing materials
o  Pre-fill two day pumping to 2*10-6 mbar
o  Signal visible even four days after the filling



Shielding
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e Full shielding for the experiment with DT generator
o  Front shielding: Iron + borated HDPE + Pb
o 1 mlong copper collimator

e Full shielding for the experiment with DD generator
o Same as for DT generator

e Front shielding for the experiment with DD generator
o borated HDPE + Pb
o 35 cm long borated HDPE+Pb envelope collimator
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Collimators

1m long copper collimator for DT generator (CNC machining & wire erosion)
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Detector Metrology .. B
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e Chamber with the O-TPC check for parallelism and
alignment between all the elements

e Main focus on alignment between beam
entrance/exit window and the drift gap of the TPC

e Largest deviation found - 0.5 mm
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NILE facility and neutron generators oo s
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e Commissioning of both DD and DT neutron generators
at the NILE facility at ISIS (RAL) is underway.
e MIGDAL experiment will start with DD generator.



Detector commissioning

e Testing detector with 100 % CF4 and 80% CF4 and 20% Ar (at 50 Torr)
e Primary calibration source Fe-55 generating low energy electrons

e Plan to use Cf-252 and Am-241 for tests with highly ionising particles
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Acquiring images using Fe-55 source (5.9 keV X-ray)
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Running with CF4 / Ar at 50 Torr We see tracks with energies

down to 2.7 keV such as

Energy spectrum of Fe55 in 80% CF4 20% Ar, based on ITO data photoelectrons and Auger
electrons from Argon !
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e Stable operation for several hours é 1000
e Recorded 190k events and 100k :
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e Total number of sparks : 32 -




We see higher energy long tracks too

Delta rays




And also betas




Imaged track with applied
ridge findner
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Waveforms from ITO strips

3D track reconstruction (long track)
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3D track reconstruction (Bragg curves from image and ITO )

Masked Image and X Bragg ITO and X Bragg

Bragg Curve

X-Projected Bragg Curve

Comparing X Projected Braggs
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3D track reconstruction
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Fully 3D reconstructed electron track (~20 keV)
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3D track reconstruction (low energy Fluorine photoelectron)

Imaged track (top) and with
applied deconvolution and
ridge findner (bottom)

Waveforms from ITO strips
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Conclusions

e \We have a running detector performing as expected

e \We established a stable operation with CF4+ Ar at 50 Torr

e We can detect and image events down to 3 keV

e \We can can perform 3D track reconstruction using images and waveforms from
ITO strips

e All parts are at RAL and shielding construction is underway

e Commissioning of the DD and DT generator is underway

e Remaining detector dynamic range tests with alphas and fission fragments to
happen very soon.

e \We are entering very exciting period nearing the experiment at the NILE facility.
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MIGDAL

Migdal In Galactic Dark mAtter expLoration

Experiment paper: https://arxiv.org/abs/2207.08284
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