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Talk outline

Introduction

Theoretical framework

• 𝑏 → 𝑠ℓ+ℓ− effective Hamiltonian

• parametrization for local and non-local form factors

• dispersive bound

Theoretical predictions

• predictions for local and non-local form factors

• predictions of BRs and 

angular observables in 𝐵 𝑠 → {𝐾(∗), 𝜙}ℓ+ℓ−

Confrontation with data

• comparison between SM predictions and data

• global fit to 𝑏 → 𝑠𝜇+𝜇−

Summary and outlook



Introduction



Flavour changing currents

flavour changing neutral currents (FCNC) absent at 

tree level in the SM

FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions

probe the SM through indirect searches

focus on 𝑏 → 𝑠ℓ+ℓ− transitions
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Flavour changing currents

flavour changing neutral currents (FCNC) absent at 

tree level in the SM

FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions

probe the SM through indirect searches

focus on 𝑏 → 𝑠ℓ+ℓ− transitions

integrate out heavy degress of freedom

(𝑊,𝑍, and Higgs boson, top quark)

⇓
weak effective field theory

EFT
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Hadronic matrix elements

study 𝑩-meson decays to test the SM, focus on to 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−

factorise decay amplitude as (neglecting QED corrections)

charged currents: ഥ𝐷 ∗ ℓ𝜈ℓ 𝒪𝑒𝑓𝑓 𝐵 = ℓ𝜈ℓ 𝒪𝑙𝑒𝑝 0 𝐷 ∗ 𝒪ℎ𝑎𝑑 𝐵

FCNC: 𝐾 ∗ ℓ+ℓ− 𝒪𝑒𝑓𝑓 𝐵 = ℓℓ 𝒪𝑙𝑒𝑝 0 𝐾 ∗ 𝒪ℎ𝑎𝑑 𝐵 + non−fact.

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties
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Hadronic matrix elements

study 𝑩-meson decays to test the SM, focus on to 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−

factorise decay amplitude as (neglecting QED corrections)

charged currents: ഥ𝐷 ∗ ℓ𝜈ℓ 𝒪𝑒𝑓𝑓 𝐵 = ℓ𝜈ℓ 𝒪𝑙𝑒𝑝 0 𝐷 ∗ 𝒪ℎ𝑎𝑑 𝐵

FCNC: 𝐾 ∗ ℓ+ℓ− 𝒪𝑒𝑓𝑓 𝐵 = ℓℓ 𝒪𝑙𝑒𝑝 0 𝐾 ∗ 𝒪ℎ𝑎𝑑 𝐵 + non−fact.

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

decay amplitudes depend on:

• local hadronic matrix elements 

(local form factors)

𝐾 ∗ 𝒪 0 𝐵

𝐷 ∗ 𝒪 0 𝐵

• nonlocal hadronic matrix elements

(soft gluon contributions 

to the charm-loop)

𝐾 ∗ 𝒪 0, 𝑥 𝐵
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Interesting observables

define observables smartly to reduce the hadronic uncertainties

e.g., observable 𝑃5
′ : angular observables in 𝐵 → 𝐾∗ℓ+ℓ−

test the lepton flavour universality to test the SM

lepton flavour universality = the 3 lepton generations have the same couplings 

to the gauge bosons

violations of lepton flavour universality ⟹ new physics

observables to test LFU

𝑅𝐾 =
Γ(𝐵 → 𝐾 𝜇+𝜇−)

Γ(𝐵 → 𝐾 𝑒+𝑒−)
𝑅𝐾∗ =

Γ(𝐵 → 𝐾∗𝜇+𝜇−)

Γ(𝐵 → 𝐾∗𝑒+𝑒−)
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𝑏(→ 𝑠ℓ+ℓ−) anomalies

𝒃 → 𝒔ℓ+ℓ− anomalies = tension between experimental measurements and theoretical predictions in 

rare B-meson decays involving different observables (𝑅𝐾 , 𝑅𝐾∗ , 𝑃5
′ , 𝐵𝑠 → 𝜙𝜇+𝜇−, branching ratio, …)

3.1𝝈 tension

[LHCb 2020][LHCb 2021]

~3𝝈 tension
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Theoretical framework



𝑏 → 𝑠ℓ+ℓ− effective Hamiltonian

transitions described by the effective Hamiltonian

ℋ 𝑏 → 𝑠ℓ+ℓ− = −
4𝐺𝐹

2
𝑉𝑡𝑏𝑉𝑡𝑠

∗ ෍

𝑖=1

10

𝐶𝑖 𝜇 𝑂𝑖 𝜇 𝜇 = 𝑚𝑏

main contributions to 𝐵 𝑠 → {𝐾(∗), 𝜙}ℓ+ℓ− in the SM given by local operators 𝑂7, 𝑂9, 𝑂10

𝑂7 =
𝑒

16𝜋2
𝑚𝑏 ҧ𝑠𝐿𝜎

𝜇𝜈𝑏𝑅 𝐹𝜇𝜈 𝑂9 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇ℓ) 𝑂10 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇𝛾5ℓ)

𝑂7 𝑂9, 𝑂10
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Charm loop in 𝐵 → 𝐾(∗)ℓ+ℓ−

additional non-local contributions come from 𝑂1
𝑐 and 𝑂2

𝑐 combined with the e.m. current

(charm-loop contribution)

𝑂1
𝑐 = ҧ𝑠𝐿𝛾

𝜇𝑐𝐿 ҧ𝑐𝐿𝛾𝜇𝑏𝐿 𝑂2
𝑐 = ҧ𝑠𝐿

𝑗
𝛾𝜇𝑐𝐿

𝑖 ҧ𝑐𝐿
𝑖𝛾𝜇𝑏𝐿

𝑗

Ԧ𝑞

𝑂1, 𝑂2

e.m.
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Decay amplitude for 𝐵 → 𝐾(∗)ℓ+ℓ− decays

calculate decay amplitudes precisely to probe the SM 

𝐵-anomalies: NP or underestimated systematic uncertainties?

(analogous formulas apply to 𝐵𝑠 → 𝜙ℓ+ℓ− decays)

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

local hadronic matrix elements

ℱ𝜇= 𝐾 ∗ 𝑘 𝑂7,9,10 𝐵 𝑘 + 𝑞

non-local hadronic matrix elements

ℋ𝜇= 𝑖න𝑑4𝑥 𝑒𝑖𝑞⋅𝑥 𝐾 ∗ 𝑘 𝑇 𝑗𝜇
em(𝑥), (𝐶1𝑂1

𝑐 + 𝐶2𝑂2
𝑐)(0) 𝐵 𝑘 + 𝑞
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Form factors definitions

form factors (FFs) parametrize hadronic matrix elements

FFs are functions of the momentum transfer squared 𝑞2

local FFs

ℱ𝜇(𝑘, 𝑞) =෍

𝜆

𝒮𝜇
𝜆(𝑘, 𝑞) ℱ𝜆(𝑞

2)

computed with lattice QCD and sum rules with good precision ~10%
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Form factors definitions

form factors (FFs) parametrize hadronic matrix elements

FFs are functions of the momentum transfer squared 𝑞2

local FFs

ℱ𝜇(𝑘, 𝑞) =෍

𝜆

𝒮𝜇
𝜆(𝑘, 𝑞) ℱ𝜆(𝑞

2)

computed with lattice QCD and sum rules with good precision ~10%

non-local FFs

ℋ𝜇(𝑘, 𝑞) =෍

𝜆

𝒮𝜇
𝜆 𝑘, 𝑞 ℋ𝜆(𝑞

2)

calculated using an Operator Product Expansion (OPE) or QCD factorization or … 

(variety of approaches, most of them model-dependent)

large uncertainties → reduce uncertainties for a better understanding of rare 𝐵 decays
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Parametrization for ℱ𝜆

obtain local FFs ℱ𝜆 in the whole semileptonic region by combining

• lattice QCD (LQCD) calculations at high 𝑞2

• light-cone sum rule (LCSR) calculation at low 𝑞2
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Parametrization for ℱ𝜆

obtain local FFs ℱ𝜆 in the whole semileptonic region by combining

• lattice QCD (LQCD) calculations at high 𝑞2

• light-cone sum rule (LCSR) calculation at low 𝑞2

ℱ𝜆 analytic functions of 𝑞2 (branch cut for 𝑞2 > 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2

)

fit results to a 𝒛 parametrization (standard approach)

ℱ𝜆∝ ෍

𝑘=0

∞

𝛼𝑘
ℱ 𝑧𝑘

𝑧 𝑞2 =
𝑡+ − 𝑞2 − 𝑡+

𝑡+ − 𝑞2 + 𝑡+

[Boyd/Grinstein/Lebed 1997]

𝒛
m

a
p
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Calculation of ℋ𝜆 at negative 𝑞2

compute the non-local FFs ℋ𝜆 using a light-cone OPE for 𝑞2 ≪ 4𝑚𝑐
2 (𝑞2 < 0)

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯
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Calculation of ℋ𝜆 at negative 𝑞2

compute the non-local FFs ℋ𝜆 using a light-cone OPE for 𝑞2 ≪ 4𝑚𝑐
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ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

+ hard gluons (𝛼𝑠) corrections

leading power (LO in 𝛼𝑠)
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Calculation of ℋ𝜆 at negative 𝑞2

compute the non-local FFs ℋ𝜆 using a light-cone OPE for 𝑞2 ≪ 4𝑚𝑐
2 (𝑞2 < 0)

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

+ hard gluons (𝛼𝑠) corrections

soft gluon correction

non-perturbative

⟹ not 𝛼𝑠 suppressed

leading power (LO in 𝛼𝑠)

[Khodjamirian et al. 2010]

[NG/van Dyk/Virto 2020]
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NLP of the light-cone OPE

𝚫𝑪𝟗(𝒒
𝟐 = 𝟏 𝐆𝐞𝑽𝟐) KMPW2010 GvDV2020

leading power (LO 𝛼𝑠) 0.27 0.27

𝐵 → 𝐾ℓℓ 𝒱𝒜 −0.09−0.07
+0.06 (1.9−0.6

+0.6) ⋅ 10−4

𝒱1 0.6−0.5
+0.7 (1.2−0.4

+0.4) ⋅ 10−3

𝐵 → 𝐾∗ℓℓ 𝒱2 0.6−0.5
+0.7 (2.1−0.7

+0.7) ⋅ 10−3

𝒱3 1.0−0.8
+1.6 (3.0−1.0

+1.0) ⋅ 10−3

𝐵𝑠 → 𝜙ℓℓ 𝒱𝑖 ⎯ see paper

• results represented as a q² dependent correction to 𝐶9

• we can reproduce the analytical results given in KMWP2010 

• our results are two orders of magnitude smaller than in KMWP2010 (⟹ smaller unc.)

• quick convergence of the light-cone OPE
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Obtaining theoretical predictions for ℋ𝜆

1. extract ℋ𝜆 at 𝑞2 = 𝑚𝐽/𝜓
2 from 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements 

(no local contribution)

2. interpolate the OPE calculation at negative 𝑞2 and the experimental results at 𝑞2 = 𝑚𝐽/𝜓
2

to obtain ℋ𝜆 for 𝑞2 < 𝑚𝐽/𝜓
2

3. new approach to obtain theoretical predictions in the low 𝑞2 (0 < 𝑞2 < 8 GeV2) region 

⟹ compare with experimental data 

need a parametrization to interpolate ℋ𝜆: which is the optimal parametrization?

light-cone OPE                                  𝑞2 = 0 interpolate (exp. data)        𝑞2 = 𝑚𝐽/𝜓
2
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Parametrizations for ℋ𝜆

• 𝑞2 parametrization

ℋ𝜆 𝑞2 = ℋ𝜆
QCDF

𝑞2 +ℋ𝜆
rest 0 +

𝑞2

𝑀𝐵
2ℋ𝜆

rest,′(0) +
𝑞2 2

𝑀𝐵
4 ℋ𝜆

rest,′′ 0 +⋯

• dispersion relation

ℋ𝜆 𝑞2 = ℋ𝜆 0 + ෍

𝜓=𝐽/𝜓,𝜓(2𝑆)

𝑓𝜓𝒜𝜓

𝑀𝜓
2 𝑀𝜓

2 − 𝑞2
+න

4𝑀𝐷
2

∞

𝑑𝑡
𝜌 𝑡

𝑡 𝑡 − 𝑞2

• 𝑧 expansion

ℋ𝜆 𝑧 = ෍

𝑛=0

∞

𝑐𝑛𝑧
𝑛

• we propose a new parametrization ( Ƹ𝑧 polynomials)

෡ℋ𝜆 Ƹ𝑧 = ෍

𝑛=0

∞

𝛽𝑛𝑝𝑛( Ƹ𝑧)

[Jäger/Camalich 2012, Ciuchini et al. 2015]

[Khodjamirian et al. 2010]

[Bobeth/Chrzaszcz/van Dyk/Virto 2017]

[NG/van Dyk/Virto 2020]
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Derivation of the dispersive bound

define the correlator

Π 𝑘, 𝑞 = 𝑖 නd4𝑥 𝑒𝑖𝑘𝑥 0 𝑇{𝒪𝜇(𝑥), 𝒪𝜇(𝑦)} 0

where

𝒪𝜇 ∝ න𝑑4𝑥 𝑒𝑖𝑞⋅𝑥 𝑇 𝑗𝜇
𝑒𝑚(𝑥), (𝐶1𝑂1

𝑐 + 𝐶2𝑂2
𝑐)(0)

use a subtracted dispersion relation

𝜒 𝑞2 ∝ න

𝑀𝐵+𝑀𝐾
2

∞

𝑑𝑠
Disc𝑏𝑠Π 𝑠

𝑞2 − 𝑠 3

calculate 𝜒 𝑞2 perturbatively and Disc𝑏𝑠Π 𝑞2 using unitarity 

14



Dispersive bound

dispersive bound

using unitarity and dispersion relation, we obtain a constraint 

on the non-local form factors ℋ𝜆

• first dispersive bound for ℋ𝐵→𝐾 , ℋ𝜆
𝐵→𝐾∗, ℋ𝜆

𝐵𝑠→𝜙

• model independent constraint 

• strengthen the bound by adding additional contributions (baryons)

1 > න

𝑀𝐵+𝑀𝐾
2

∞

𝑑𝑠 𝜙𝐵→𝐾 𝑧 2 ℋ𝐵→𝐾(𝑠) 2 + 𝐵 → 𝐾∗ and 𝐵𝑠 → 𝜙 contr.
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Exploit the dispersive bound

ℋ𝜆 has a branch cut for 𝑞2 > Ƹ𝑡+ = 4𝑀𝐷
2 ⎯ note that Ƹ𝑡+ ≠ 𝑡+ ≡ 𝑀𝐵 +𝑀𝐾 ∗

2

define the Ƹ𝑧 mapping

Ƹ𝑧 𝑞2 =
Ƹ𝑡+ − 𝑞2 − Ƹ𝑡+

Ƹ𝑡+ − 𝑞2 + Ƹ𝑡+

𝑞2 plane 

real axis 𝑞2 > Ƹ𝑡+

Ƹ𝑧 plane

arc of unit circle
⟹
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Exploit the dispersive bound

1 > න

𝑀𝐵+𝑀𝐾
2

∞

𝑑𝑠 𝜙𝐵→𝐾 𝑠 2 ℋ𝐵→𝐾 𝑠 2 + 𝐵 → 𝐾∗ and 𝐵𝑠 → 𝜙 contr.

apply the Ƹ𝑧 mapping

1 > න

−𝛼𝐵𝐾

+𝛼𝐵𝐾

𝑑𝛼෍

𝜆

෡ℋ𝐵→𝐾( Ƹ𝑧)
2
+ 𝐵 → 𝐾∗ and 𝐵𝑠 → 𝜙 contr.

where Ƹ𝑧 = 𝑒𝑖𝛼 and

෡ℋ𝐵→𝐾 ( Ƹ𝑧) = 𝒫 Ƹ𝑧 𝜙𝐵→𝐾( Ƹ𝑧) ℋ𝜆
𝐵→𝐾( Ƹ𝑧)

Blaschke factor 𝒫,  outer function 𝜙𝐵→𝐾
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1 > න

−𝛼𝐵𝐾

+𝛼𝐵𝐾

𝑑𝛼 ෡ℋ𝐵→𝐾( Ƹ𝑧)
2
+ 𝐵 → 𝐾∗and 𝐵𝑠 → 𝜙 contr.

expand ෡ℋ𝜆 in orthogonal polynomials 𝑝𝑛( Ƹ𝑧)

෡ℋ( Ƹ𝑧) = ෍

𝑛=0

∞

𝛽𝑛 𝑝𝑛( Ƹ𝑧)

now the dispersive bound reads

1 > ෍

𝑛=0

∞

𝛽𝑛
𝐵→𝐾 2 +෍

𝜆

2෍

𝑛=0

∞

𝛽𝜆,𝑛
𝐵→𝐾∗ 2

+෍

𝑛=0

∞

𝛽𝜆,𝑛
𝐵𝑠→𝜙

2

no bound for the Ƹ𝑧 monomials 

(coefficient of the Taylor expansion)

෡ℋ𝜆 parametrization

𝑝0
𝐵→𝐾 Ƹ𝑧 =

1

2𝛼𝐵𝐾

𝑝1
𝐵→𝐾 Ƹ𝑧 = Ƹ𝑧 −

sin 𝛼𝐵𝐾

𝛼𝐵𝐾

𝛼𝐵𝐾

2𝛼𝐵𝐾
2 +cos 2𝛼𝐵𝐾 −1

𝑝2
𝐵→𝐾 Ƹ𝑧 = Ƹ𝑧2 +

sin 𝛼𝐵𝐾 sin 2𝛼𝐵𝐾 −2𝛼𝐵𝐾

2𝛼𝐵𝐾
2 +cos 2𝛼𝐵𝐾 −1

Ƹ𝑧 +
2 sin

2

𝑝3
𝐵→𝐾 Ƹ𝑧 = ⋯

18



Theoretical predictions



Local form factors predictions

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

obtain numerical results for the local FFs

ℱ𝜆 ≅ 𝒫෍

𝑘=0

3

𝛼𝑘
ℱ 𝑧𝑘

for 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− fit the 𝒛 parametrization to

• LQCD calculations at high 𝑞2

[FLAG review 2021] [Horgan et al. 2013][Horgan et al. 2015]

• LCSR calculation at low 𝑞2

[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]

[NG/van Dyk/Virto 2020]

large 𝑝 values

results given in machine readable files
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Non-local form factors predictions

𝒜 𝐵 → 𝐾(∗)ℓℓ = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

obtain numerical results for the non-local FFs ℋ𝜆

෡ℋ𝜆 ≅ ෍

𝑛=0

5

𝛽𝑛𝑝𝑛( Ƹ𝑧)

fit the Ƹ𝑧 parametrization

• light-cone OPE calculation at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆 𝑞2 ℱ𝜆 𝑞2 + ሚ𝐶𝜆 𝑞2 𝒱𝜆 𝑞2 +⋯

• 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements at 𝑞2 = 𝑚𝐽/𝜓
2

• dispersive bound 

all 𝑝 values > 11%

results given in machine readable files

20



using our local and non-local FFs values

we predict branching ratios and angular observables in 
𝐵 → 𝐾𝜇+𝜇−, 𝐵 → 𝐾∗𝜇+𝜇−, and 𝐵𝑠 → 𝜙𝜇+𝜇− in the SM

• we do not use QCD factorization (QCDF)

like all previous SM predictions

(non-quantifiable systematic uncertainty)

• first predictions using dispersive bounds 

(control the truncation errors)

• systematically improvable approach

(more precise form factor results, saturate the 

bound,…)

Standard Model predictions 21



• plot produced with same FFs inputs

• central values in excellent agreement

but smaller uncertainties in QCDF

(systematic unc. not considered)

• same shape (also in 𝐵 → 𝐾∗𝜇+𝜇−, 

deviation found in 𝐵𝑠 → 𝜙𝜇+𝜇−)

• no increasing uncertainty at the 𝐽/𝜓 pole in QCDF

(charm-loop treated perturbatively)

Comparison with QCD factorization 22



Confrontation with data



• ”BSM best fit” ⟶ best fit point of our BSM fit 

(see next slides)

• ”BSM benchmark” ⟶ set 𝐶9
NP𝜇

= −𝐶10
NP𝜇

= −0.5

• sizable tension between SM predictions and 

experimental results

• tension larger than in other works in the literature

⟶ inputs for the local FFs 𝓕𝝀

• results consistent with the deviations found in 𝑅𝐾

Comparison with measurements for 𝐵 → 𝐾𝜇+𝜇− 23



tension smaller than in other works in the literature ⟶ inputs for the local FFs 𝓕𝝀

Comparison with measurements for 𝐵 → 𝐾∗𝜇+𝜇− 24



• consistent picture with the deviations
in 𝐵 → 𝐾𝜇+𝜇−, 𝐵 → 𝐾∗𝜇+𝜇−

• choice of theory inputs (local FFs ℱ𝜆) is decisive

⟶ usage of light-meson LCSRs rather than 

𝐵-meson LCSRs yields much larger tension w.r.t. data

• precise LQCD calculations at low 𝑞2 essential

to have more reliable theoretical predictions

(already available for 𝐵 → 𝐾ℓ+ℓ− [HPQCD 2022])

• expect deviation in 𝑅𝜙 measurement 

(not measured yet)

Comparison with measurements for 𝐵𝑠 → 𝜙𝜇+𝜇− 25



use our predictions for the local and non-local FFs as priors

fit the Wilson coefficients 𝐶9
NP𝜇

and 𝐶10
NP𝜇

to the available experimental measurements in 

𝑏 → 𝑠𝜇+𝜇− transitions

(𝐶9,10 = 𝐶9,10
SM + 𝐶9,10

NP𝜇
)

we perform three fits, one for each set of the following set of experimental measurements:

(BRs, angular observables, binned and not binned)

• 𝐵 → 𝐾𝜇+𝜇− + 𝐵𝑠 → 𝜇+𝜇−

• 𝐵 → 𝐾∗𝜇+𝜇−

• 𝐵𝑠 → 𝜙𝜇+𝜇−

combined fit would be very challenging ⟶ 130 nuisance parameter

Global fit to 𝑏 → 𝑠𝜇+𝜇− (setup) 26



we obtain good fits, agreement between the three fits

substantial tension w.r.t. SM (in agreement with the literature)

pulls (𝑝 value of the SM hypothesis):

• 5.7𝜎 for 𝐵 → 𝐾𝜇+𝜇− + 𝐵𝑠 → 𝜇+𝜇−

• 2.7𝜎 for 𝐵 → 𝐾∗𝜇+𝜇−

• 2.6𝜎 for 𝐵𝑠 → 𝜙𝜇+𝜇−

local FFs ℱ𝜆 main uncertainties

non-local FFs ℋ𝜆 cannot explain this tension

Global fit to 𝑏 → 𝑠𝜇+𝜇− (results) 27



Summary and outlook



Summary

1. new theoretical predictions using our calculation for the non-local form factors ℋ𝜆 at 𝑞2 < 0, 

experimental data for 𝐵 → 𝐾(∗)𝐽/𝜓, and a dispersive bound

dispersive bound allows to control truncation error

new approach ⎯ℋ𝜆 uncertainties can be systematically reduced

predictions improvable with more precise local form factors ℱ𝝀 results (new lattice QCD results), 

saturating the dispersive bound, …

2. fit the Wilson coefficients 𝐶9
NP𝜇

and 𝐶10
NP𝜇

using the available experimental data

good fit to the data, corroborate substantial tension w.r.t. SM (in agreement with the literature) 

⟹ coherent BSM explanation
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Outlook

FFs predictions

• dispersive analysis of the local FFs

• include Λ𝑏 → Λℓ+ℓ− decays to further constrain the non –local FFs

• use 𝐵 → 𝐾 ∗ 𝜓(2𝑆) and 𝐵𝑠 → 𝜙 𝜓(2𝑆) measurements

Global analysis

• perform a simultaneous analysis of the three decay modes

• include the LFU ratios 𝑅𝐾
∗

(and 𝑅𝜙) in the global fit

• include Λ𝑏 → Λℓ+ℓ− decays to further constrain the Wilson coefficients
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Thank you!


