

Searches for dark matter at ATLAS

2022 International conference on Neutrinos and Dark Matter <u>Guglielmo Frattari</u> on behalf of the ATLAS collaboration 25 September 2022

Introduction

- dark matter searches approach at LHC evolved between Run-1 (< 2012) and Run-2, 2015-2018
 - exploring richer kinematics & phenomenology

Monojet analysis overview

golden channel to look for dark matter at the LHC

- crucial to control the uncertainty on background predictions:
 - rely on state-of-the-art Monte Carlo simulations + use data in control-regions to correct simulation

Phys. Rev. D 103 (2021) 112006

Background estimation

- simultaneous fit to Signal + Control Regions (CRs)
 - CRs: same topology of the SR inverting lepton veto leptons = invisible particles: $E_T^{\text{miss}} \rightarrow p_T^{\text{recoil}}$
- NNLO QCD & nNLO EW correction to V+jets processes following <u>Eur. Phys. J. C 77, 829 (2017)</u>

Phys. Rev. D 103 (2021) 112006

Dark matter interpretations

<u>Simplified dark matter models</u>: 5 parameters, $\{m_X, m_{Z'}, g_q, g_X\}$ + minimal mediator width Γ

see backup for many more interpretation of the results

Phys. Rev. D 103 (2021) 112006

Di-jet resonance searches

bump-hunting the mjj spectrum, both inclusive & b-tagged jets only

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$$
 $x = m_{jj}/\sqrt{2}$

JHEP 03 (2020) 145

Spin 1 mediator searches summary

- broad ATLAS search program yielding complementary sensitivity to direct detection experiment results

• results provided for both Vector & Axial vector mediators following LHC DM WG recommendations on g_q / g_X

Hunting for scalar mediators in $tt + E_T^{miss}$ final states

- scalar mediators → Yukawa-like coupling with SM particles : sensitivity driven by 3rd generation
- $tt+E_T^{miss}$ search provides three independent channels based on # of charged leptons
 - $E_{\rm T}^{\rm miss}$, leptons & b-jet triggers
 - large E_T^{miss} , large jet multiplicities, ≥ 1 b-tagged jets
 - main background processes: tt, ttZ, Z(vv)+jets
- custom variables to reconstruct ttbar system
 - stransverse mass, m_{T2}
 - large radius jets with R = 1.0 or variable-R in 1 lepton
- all channels combined in <u>ATLAS-CONF-2022-007</u>

Spin 0 mediator searches summary

- multiple complementary channels explored
 - sensitivity driven by $tt + E_{\tau}^{miss}$ 0+1+2 lepton channel combination

ATL-PHYS-PUB-2022-036

ATLAS monojet vs ID searches results

The Higgs boson as a portal to the dark sector

- two possible classes of models:

 - 1. extended Higgs sector portal models \rightarrow DM produced in association with the Higgs boson 2. SM Higgs portal models \rightarrow invisible decay modes of the Higgs boson
- 1. Benchmark model: 2HDM+a Phys.Dark Univ. 27 (2020) 100351
 - type II two-Higgs doublet model, including 5 new fields h, H^0 , H^\pm , A + additional pseudo-scalar <math>a• 14 free parameters, mostly constrained by EW measurements - assumptions can reduce those to 7 or 8

Mono-H

Mono-Z

Dark matter + H(bb) production search

- target similar final states of the monojet analysis: H(bb) recoiling against large E_{T}^{miss}
 - $E_T^{\text{miss}} > 150$ GeV, 2 or 3 jets in the final states to be b-tagged, forming H→bb candidate
 - 0 lepton final states SR, 1 & 2 lepton events used to correct background predictions (CRs)

discriminant variable

JHEP 11 (2021) 209

boosted topology

 $E_{\rm T}^{\rm miss} > 500 \, {\rm GeV}$

Search for DM in mono-Z(II) final states

- target events with Z(ee/ $\mu\mu$) candidate balancing invisible particles production: I $p_{T,II} E_T^{miss}I / p_{T,II} < 0.4$
- clean final states, requiring at most 1 extra jets and large E_T^{miss} , > 90 GeV

Phys. Lett. B 829 (2022) 137066

• exploit 3-leptons and 4-leptons CRs to constrain leading WZ and ZZ backgrounds - eµ CR for top processes bkg.

discriminant variable for 2HDM+a interpretations: transverse mass

$$m_{\rm T} = \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left[\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right]^2}$$

additional interpretations:

- simplified DM models results included in summary plots
- invisible Higgs decays \rightarrow discussed later in this talk

 \rightarrow enhanced sensitivity using BDT discriminant

Results summary

- several scans of parameters performed
 - scan parameters agreed with LHC DWWG
 - multiple parameters scans reported in <u>ATL-RHYS-PUB-2022/036</u>

ATLAS-CONF-2021-036

A

ratio between SM Higgs vev & extended Higgs vev

Giving mass to the dark sector

- introduce an additional scalar particle s, the dark Higgs boson <u>JHEP 04(2017)143</u>
 - additional parameter to simplified models { m_X , $m_{Z'}$, m_s , g_q , g_X }
 - SM-Higgs-like decays: $s \rightarrow WW$ (ZZ) for $m_s > 160$ (180) GeV

Hadronic decays - <u>Phys. Rev. Lett. 126 (2021) 121802</u>

- additional scalar reconstructed as large-R jet
 - exploit substructure variables to identify W candidates
- discriminant variable: m_J

Semi-leptonic decays - <u>ATLAS-CONF-2022-029</u>

- exploring both resolved and merged categories
- discriminant variable m_s

resolved: lepton + 2 jets merged: large-R jet

Dark Higgs summary & results

tt+single top

Background Uncertainty

2ℓ Control Region

Diboson+VH

region

Events

10⁴

Z+jets

W+jets

1µ Control Region

WW(qqlv)

Rev. Lett.

ATLAS

CR only fit

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Signal Region

- better sensitivity for the semi-leptonic channel
- complementarity with re-interpretation of preliminary run-2 mono-H(bb) result
 - boost sensitivity in the [80,150] GeV m_{bb} range

Invisible decays of the Higgs boson

- SM Higgs boson invisible decays: $H \rightarrow ZZ^* \rightarrow 4v \sim 0.12\%$
 - BSM modes could lead to enhanced rates

VBF production most sensitive channel:

- two forward jets with large invariant mass, mjj > 800 GeV
- large $|\Delta \eta_{ii}| > 3.8$, small $|\Delta \phi|$, $E_T^{miss} > 160 \text{ GeV}$
- $E_{\rm T}^{\rm miss}$ triggers to select the events

Leading backgrounds:

• EW Z(vv)+jets, QCD Z(vv)+jets, W+jets

VBFH, $H \rightarrow$ invisible analysis strategy & results

- similar strategy to monojet: adopt 1 & 2 lepton CRs enriched in V+jets backgrounds
- discriminant variable: mjj SR categorized in njet, $\Delta \phi_{jj}$ to enhance sensitivity

<u>JHEP 08 (2022) 104</u>

• Z to W ratio predictions @NLO QCD, NLO EW - <u>arXiv:2204.07652</u> - used to constrain Z(vv)+jets with W(lv)+jets too

Higgs to invisible decays: combination

- ATLAS preliminary combination of some full run 2 results, including
 - tt + E_T^{miss} analysis, only 0 and 2 lepton channels

Combined upper limit: BR(H \rightarrow inv.) < 11% (11% exp) @95% CL

• VBFH, H \rightarrow invisible preliminary analysis result - not including W to Z corrections & low E_T^{miss} regime [160, 250] GeV

- available LHC-Run 2 ATLAS results not included in this combination - all limits @95% CL:
 - $ttH+E_T^{miss}$ 0+1+2 lepton channels combined
 - monojet: BR(H→inv.) < 34% (39%) obs (exp)
 - VBFH+ γ : BR(H \rightarrow inv.) < 37% (34%) obs (exp)
 - mono-Z(II): BR(H→inv.) < 19% (19%) obs (exp)

Dark matter in unconventional signatures

- alternative approach: search for dark matter hints in unconventional signatures
 - semi-visible jets production <u>ATLAS-CONF-2022-038</u>
 - long-lived particles as portals to the dark sector

Very broad program covered by the ATLAS experiment!

	Model	Signature	∫£ dt [f	b ⁻¹]	Lifetime limit				Reference
	RPV $\tilde{t} ightarrow \mu q$	displaced vtx + muon	136	t lifetime			0.003-6.0 m	$m(\tilde{t})=$ 1.4 TeV	2003.11956
	$RPV\tilde{\chi}_1^0\to eev/e\mu v/\mu\mu v$	displaced lepton pair	32.8	${ ilde \chi}_1^0$ lifetime		0.003-1.0 m		$m(ilde{q}){=}$ 1.6 TeV, $m(ilde{\chi}_1^0){=}$ 1.3 TeV	1907.10037
	$\operatorname{GGM} \widetilde{\chi}_1^0 \to Z \widetilde{G}$	displaced dimuon	32.9	$ ilde{\chi}_1^0$ lifetime			0.029-18.0 m	$m(ilde{g}){=}$ 1.1 TeV, $m(ilde{\chi}_1^0){=}$ 1.0 TeV	1808.03057
	GMSB	non-pointing or delayed γ	[,] 139	${ ilde \chi}_1^0$ lifetime		0.24	4-2.4 m	$m(\tilde{\chi}^0_1, \tilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	CERN-EP-2022-096
	GMSB $\tilde{\ell} \to \ell \tilde{G}$	displaced lepton	139	$ ilde{m{\ell}}$ lifetime		6-750 mm		$m(ilde{\ell}){=}$ 600 GeV	2011.07812
X	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$	displaced lepton	139	$ ilde{ au}$ lifetime		9-270 mm		$m(ilde{\ell}){=}200~{ m GeV}$	2011.07812
SUS	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$	disappearing track	136	${ ilde \chi}_1^{\pm}$ lifetime		0.0	06-3.06 m	$m(ilde{\chi}_1^{\pm}){=}$ 650 GeV	2201.02472
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-$	large pixel dE/dx	139	${ ilde \chi}_1^{\pm}$ lifetime		0.3-30.0	m	$m(ilde{\chi}_1^{\pm}) =$ 600 GeV	2205.06013
	Stealth SUSY	2 MS vertices	36.1	S lifetime		0.1-519 m		$\mathcal{B}(\tilde{g} \rightarrow \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$	1811.07370
	Split SUSY	large pixel dE/dx	139	ĝ lifetime		> 0.4	45 m	$m(ilde{g})=$ 1.8 TeV, $m(ilde{\chi}_1^0)=$ 100 GeV	2205.06013
	Split SUSY	displaced vtx + E_{T}^{miss}	32.8	ĝ lifetime		-	0.03-13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
	Split SUSY	0 ℓ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$	36.1	ğ lifetime		0.0-	<mark>2.1 m</mark>	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018-003
	$H \rightarrow s s$	2 MS vertices	139	s lifetime		0.31-72.	4 m	<i>m</i> (<i>s</i>)= 35 GeV	2203.00587
~	$H \rightarrow s s$	2 low-EMF trackless jets	139	s lifetime			0.19-6.94 m	<i>m</i> (<i>s</i>)= 35 GeV	2203.01009
: 109	VH with $H o ss o bbbb$	2ℓ + 2 displ. vertices	139	s lifetime	4-85 m	m		<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
BR =	FRVZ $H \rightarrow 2\gamma_d + X$	2 μ –jets	139	γ _d lifetime		0.654-939 mm		$m(\gamma_d) =$ 400 MeV	2206.12181
sbb	FRVZ $H ightarrow 4\gamma_d + X$	2 μ –jets	139	γ_{d} lifetime		2.7-534 mm		$m(\gamma_d) =$ 400 MeV	2206.12181
Ī	$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime	0.009-24.0 m	_		$m(Z_d) = 40 \text{ GeV}$	1808.03057
	$H \rightarrow ZZ_d$ 2	e, μ + low-EMF trackless	jet 36.1	Z _d lifetime			0.21-5.2 m	$m(Z_d)=$ 10 GeV	1811.02542
Scalar	$\Phi(200 \text{ GeV}) \rightarrow s s$	ow-EMF trk-less jets, MS v	/tx 36.1	s lifetime		0.41-	51.5 m	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
	$\Phi(600 \text{ GeV}) \rightarrow s s$	ow-EMF trk-less jets, MS v	/tx 36.1	s lifetime	C	.04-21.5 m		$\sigma \times \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
	$\Phi(1 \text{ TeV}) \rightarrow s s$ lo	ow-EMF trk-less jets, MS v	/tx 36.1	s lifetime		0.06-52.4 m		$\sigma imes \mathcal{B} = 1$ pb, $m(s) = 150$ GeV	1902.03094
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	μ 139	N lifetime	0.74-42 mm			m(N) = 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	μ 139	N lifetime	3.1-33 mm			m(N) = 6 GeV, Majorana	2204.11988
HNL	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N lifetim <mark>e</mark>	0.49-81 mi	n		m(N) = 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N life <mark>time</mark>	0.39-51 mm			m(N) = 6 GeV, Majorana	2204.11988
				0.00	0.01	0.1 1	10	¹⁰⁰ cτ [m]	

Summary

- presented overview of broad ATLAS program on dark matter searches carried out with LHC Run 2 data-set:
 - monojet: <u>Phys. Rev. D 103 (2021) 112006</u>
 - dijet: <u>JHEP 03 (2020) 145</u>
 - O-lepton: <u>Eur. Phys. J. C 80 (2020) 737</u>
 - tt+MET 1-lepton: <u>JHEP 04 (2021) 174</u>
 - 2-lepton: <u>JHEP 04 (2021) 165</u>
 - mono-H(bb): <u>JHEP 11 (2021) 209</u>
 - mono-Z(II): <u>Phys. Lett. B 829 (2022) 137066</u>
 - mono-S(VV) hadronic: <u>Phys. Rev. Lett. 126 (2021) 121802</u>
 - mono-S(WW) semileptonic: <u>ATLAS-CONF-2022-029</u>
 - VBFH, H→ invisible: <u>JHEP 08 (2022) 104</u>
 - H→invisible combination: <u>ATLAS-CONF-2020-052</u>

...stay tuned for new results!

Backup

VBFH + γ , H \rightarrow invisible search

- enhance suppression of QCD backgrounds requiring an extra photon
- deep neural network approach to improve signal / background discrimination
 - main discriminating features: $\Delta \eta$, $\Delta \phi$, η_{γ} , jet p_T
- EW Wγ predictions corrected in dedicated CR
- no free floating normalization of EW Zy due to degeneracy with the signal

Eur. Phys. J. C 82 (2022) 105

BR(H→inv.) < 37% (34% exp) @95% CL

Effect of systematic uncertainties in the monojet analysis

Leading uncertainties: V+jets processes modelling Experimental uncertainties at % level

Effect of systematic uncertainties in the $tt+E_T^{miss}$ analysis

