International Conference on Neutrinos and Dark Matter (NuDM-2022)

Modular symmetries and the flavor problem

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

S.King, talk at Bethe Forum on Modular Flavor Symmetries

The Flavor Problem

Mass hierarchies

$$
m_d \ll m_s \ll m_b
$$
, $\frac{m_d}{m_s} = 5.02 \times 10^{-2}$,

$$
m_u \ll m_c \ll m_t, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3},
$$

$$
\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};
$$

 \rightarrow

$$
\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};
$$

The Flavor Problem

$$
m_d \ll m_s \ll m_b
$$
, $\frac{m_d}{m_s} = 5.02 \times 10^{-2}$,

$$
m_u \ll m_c \ll m_t
$$
, $\frac{m_u}{m_c} = 1.7 \times 10^{-3}$,

$$
\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};
$$

$$
\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};
$$

almost a diagonal matrix

all mixing are large but the 13 element

* Smallness of neutrino masses:

See-saw

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n \rightarrow e^{(-q_L + q_H + q_R + n \ast q_\theta)}
$$

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_N^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

 $\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$

mlight∼ m_D^2 \bm{M}_M^R

No clue on mixing !

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n
$$

Too many O(1) coefficients Works better for small mixing

* Smallness of neutrino masses:

See-saw

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L\!\sim\!\overline{\Psi_{L}}\,H\,\Psi_{R}\!\left(\frac{\theta}{\Lambda}\right)^{\!n}
$$

Too many O(1) coefficients Works better for small mixing

Complicated scalar sector

* mixing angles

elegant explanation: non-Abelian discrete flavour symmetries

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

G**(N), N>=2** are infinite normal subgroups of Γ

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

G**(N), N>=2** are infinite normal subgroups of Γ

the group $\Gamma(N)$ acts on the complex variable τ (Im τ >0)

$$
\gamma \tau = \frac{a \tau + b}{c \tau + d}
$$

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$
\overline{\Gamma}(2) = \Gamma(2)/\{1, -1\}
$$
\n
$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$
\nsince 1 and -1 cannot be
\ndistinguished.

distinguished

$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$

since 1 and -1 **can** be distinguished

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$
\Gamma(2) = \Gamma(2)/\{1, -1\}
$$
\n
$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$
\nsince 1 and -1 cannot be distinguished

\nsince 1 and -1 can be digit.

$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$

since 1 and -1 **can** be distinguished

Finite **Modular Group:**
$$
\Gamma_N
$$

$$
\Gamma_N = \frac{\overline{\Gamma}}{\overline{\Gamma}(N)}
$$

Generators of $\Gamma_{\text{\tiny N}}$: elements S and T satisfying

$$
S^{2} = 1, (ST)^{3} = 1, T^{N} = 1
$$

$$
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}
$$

corresponding to:

$$
\tau \stackrel{s}{\rightarrow} -\frac{1}{\tau} \qquad \qquad \tau \stackrel{\tau}{\rightarrow} \tau + 1
$$

Generators of $\Gamma_{\text{\tiny N}}$: elements S and T satisfying

$$
S^{2} = 1, (ST)^{3} = 1, T^{N} = 1
$$

$$
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}
$$

corresponding to:

relevant for model building:

for N \leq 5, the finite modular groups $\Gamma_{\text{\tiny N}}$ are isomorphic to non-Abelian discrete groups

$$
\Gamma_2 \simeq S_3 \qquad \Gamma_3 \simeq A_4 \qquad \Gamma_4 \simeq S_4 \qquad \Gamma_5 \simeq A_5
$$

Then the question is: why Modular Symmetry ?

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$
f(\gamma \tau) = (c \tau + d)^{2k} f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)
$$
 2k = weight, N = level

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$
f(y\tau)=(c\tau+d)^{2k}f(\tau), \quad y=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)
$$
 2k = weight, N = level

Princeton University Press 1962

Key points:

1. Modular forms of weight 2k and level $N \ge 2$ are invariant, up to the factor (cτ + d)^{2k} under $\Gamma(\textsf{N})$ but they transform under $\Gamma_{_{\textsf{N}}}$! $f_i(y \tau) = (c \tau + d)^{2k} \rho(y)_{ij} f_j(\tau)$ unitary representation of $\Gamma_{\substack{N}}$ representative element of $\Gamma_{\substack{N}}$

Key points:

- 1. Modular forms of weight 2k and level $N \geq 2$ are invariant, up to the factor (cτ + d)^{2k} under $\Gamma(\textsf{N})$ but they transform under $\Gamma_{_{\textsf{N}}}$! unitary representation of $\Gamma_{\substack{N}}$ representative element of $\Gamma_{\substack{N}}$ $f_i(y \tau) = (c \tau + d)^{2k} \rho(y)_{ij} f_j(\tau)$
- 2. in addition, one assumes that the fields of the theory $\boldsymbol{\chi}_{_\text{t}}$ transforms nontrivially under $\Gamma_{_{\rm N}}$

$$
\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j
$$

not modular forms ! No restrictions on ki Building blocks:

1. Modular forms and fields: $L_{\it eff}$ $\in~f($ $\tau) \times \phi^{(1)}...$ $\phi^{(n)}$

Building blocks:

1. Modular forms and fields: $L_{\it eff}$ $\in~f($ $\tau) \times \phi^{(1)}...$ $\phi^{(n)}$

2. Invariance under modular transformation requires:

$$
2k = \sum_{i} k_{i}
$$

$$
\rho_{f} \otimes \rho_{\chi_{i}} \otimes \dots \otimes \rho_{\chi_{n}} \supset I
$$

To start playing the game:

Can someone give me the Modular Forms?

Long list from **S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022**

For $(\Gamma_3 \simeq A_4)$, the generating (basis) modular forms of weight 2 were shown to form a 3 of A_4 (expressed in terms of log derivatives of Dedekind *n*-function η'/η of 4 different arguments).

F. Feruglio. arXiv:1706.08749

For $(\Gamma_2 \simeq S_3)$, the two basis modular forms of weight 2 were shown to form a 2 of S_3 (expressed in terms of η'/η of 3 different arguments).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For $(\Gamma_4 \simeq S_4)$, the 5 basis modular forms of weight 2 were shown to form a 2 and a 3' of S_4 (expressed in terms of η'/η of 6 different arguments).

J. Penedo, STP. arXiv:1806.11040

For $(\Gamma_5 \simeq A_5)$, the 11 basis modular forms of weight 2 were shown to form a 3, a 3' and a 5 of A_5 (expressed in terms of Jacobi theta function $\theta_3(z(\tau),t(\tau))$ for 12 different sets of $z(\tau)$, $t(\tau)$).

P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:

i) for $N = 4$ (i.e., S_4), multiplets of weight 4 (weight $k \le 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);

ii) for $N = 3$ (i.e., A_4) multiplets of weight $k \le 6$ were found in arXiv:1706.08749;

iii) for $N = 5$ (i.e., A_5), multiplets of weight $k \le 10$ were derived in arXiv:1812.02158.

Model Building

Constructing the Modular Forms

Crucial observation:

if
\n
$$
g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^k g(\tau)
$$

\nthen
\n
$$
\frac{d}{d \tau} \log[g(\tau)] \rightarrow (c \tau + d)^2 \frac{d}{d \tau} \log[g(\tau)] + kc(c \tau + d)
$$
\nthis term prevents of

having a modular form of weight **2 k = 2**

Model Building

Constructing the Modular Forms

Crucial observation:

d ^τ

if
\n
$$
g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^{k} g(\tau)
$$
\nthen
\n
$$
\frac{d}{d \tau} \log[g(\tau)] \rightarrow (c \tau + d)^{2} \frac{d}{d \tau} \log[g(\tau)] + kc(c \tau + d)
$$
\nthis term prevents of having a modular form
\n
$$
\frac{d}{d \tau} \sum_{i} \log[g_{i}(\tau)] \rightarrow (c \tau + d)^{2} \frac{d}{d \tau} \sum_{i} \log[g_{i}(\tau)] + (\sum_{i} k_{i}) c(c \tau + d)
$$

d ^τ

with $\Sigma_i k_i = 0$

26

Let us find the functions $f(\tau)$!

The group S_3 contains $1+1'+2$

two independent modular forms can fit into a doublet of S_3

Let us find the functions $f(\tau)$!

The group S_3 contains $1+1'+2$

two independent modular forms can fit into a doublet of S_3

Dedekind eta functions
$$
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)
$$
 $q \equiv e^{i2\pi\tau}$

S:
$$
\eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)
$$
, T: $\eta(\tau + 1) = e^{i\pi/12} \eta(\tau)$

 η^{24} is a modular form of weight 12

Constructing the Modular Forms

the system is closed under modular transformation

Constructing the Modular Forms

the system is closed under modular transformation

candidate modular form

 $Y(\alpha,\beta,\gamma)=$ *d d* ^τ $\left[\alpha \log \eta(\tau/2)+\beta \log \eta((\tau+1)/2)+\gamma \log \eta(2 \tau)\right]$

 $\alpha + \beta + \gamma = 0$

A case study: I 2 \sim S 3

Constructing the Modular Forms

Equations to be satisfied:

$$
\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}
$$

 \mathbf{I}

representation of generators $\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$
(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}
$$

A case study: I 2 \sim S 3

Constructing the Modular Forms

Equations to be satisfied:

$$
\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}
$$

 \mathbf{I}

*Y*₁(α,β, *y*)∼*Y* (1,1,−2) *Y*₂

 $Y_2(\alpha, \beta, \gamma) \sim Y(1, -1, 0)$

$$
Y_1(\tau) = \frac{i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right) Y_2(\tau) = \frac{\sqrt{3}i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right),
$$

doublet of S3: Y

representation of generators

 $\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$

For a satisfactory model, we ask:

- 1. small number of operators → **predictability**
- 2. no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** t

For a satisfactory model, we ask:

- 1. small number of operators → **predictability**
- 2. no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** t

For a satisfactory model, we ask:

- 1. small number of operators → **predictability**
- 2. no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** t

using one power of Y (modular form of lowest weight)

$$
L = h_u^2 \left[a \left(\left(L_{e\mu} L_{e\mu} \right)_2, Y \right)_1 + b \left(L_{e\mu} V \right)_1 \right]
$$

$$
m_v = \begin{pmatrix} aY_2 & aY_1 & bY_1/2 \\ aY_1 & -aY_2 & bY_2/2 \\ bY_1/2 & bY_2/2 & 0 \end{pmatrix}
$$

Mass matrix against the experimental data

$$
m_{\nu} = \begin{pmatrix} aY_2 & aY_1 & bY_1/2 \\ aY_1 & -aY_2 & bY_2/2 \\ bY_1/2 & bY_2/2 & 0 \end{pmatrix}
$$

5 observables, 2 complex parameters: a/b and $\tau \rightarrow \nu$ ery difficult task!

large χ^2 of O(100) mainly driven by θ_{13}

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated by modular forms

unified description of quarks and leptons

symmetry breaking by the vev of tau only

A lot to do:

mass hierarchy

more than one modulus

more pheno: leptogenesis, LFV...

Backup slides

Kahler potential

Under Γ :

$$
\begin{cases}\n\tau \to \frac{a\tau + b}{c\tau + d} \\
\varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)}\n\end{cases}
$$

Tte invariance of the action requires the invariance of the superpotential w(Φ) and the invariance of the Kahler potential up to a Kahler transformation:

$$
\begin{cases}\nw(\Phi) \to w(\Phi) \\
K(\Phi, \bar{\Phi}) \to K(\Phi, \bar{\Phi}) + f(\Phi) + f(\bar{\Phi})\n\end{cases}
$$

Kahler potential:

$$
\sum_{I}(-i\tau+i\bar{\tau})^{-k_I}|\varphi^{(I)}|^2 \longrightarrow
$$

modular invariant kinetic terms

$$
\frac{h}{\langle-i\tau+i\bar\tau\rangle^2}\partial_\mu\bar\tau\partial^\mu\tau+\sum_I\frac{\partial_\mu\overline\varphi^{(I)}\partial^\mu\varphi^{(I)}}{\langle-i\tau+i\bar\tau\rangle^{k_I}}
$$

a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup which is invariant under conjugation by members of the group of which it is a part: a subgroup N of the group G is normal in G if and only if $(g \nvert g^{-1}) \in N$ for all $g \in G$ and $n \in N$

G**(N), N>=2** are infinite normal subgroups of Γ, called principal congruence subgroups

the group $\Gamma(N)$ acts on the complex variable τ (Im τ > 0)

$$
\gamma \tau = \frac{a \tau + b}{c \tau + d}
$$

And it can be shown that the upper half-plane is mapped to itself under this action. The complex variable is henceforth restricted to have positive imaginary part

Modular Functions and Modular Forms J. S. Milne

DEFINITION 0.2. A holomorphic function $f(z)$ on $\mathbb H$ is a *modular form of level* N and weight 2k if

(a)
$$
f(\alpha z) = (cz+d)^{2k} \cdot f(z)
$$
, all $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$;

(b) $f(z)$ is "holomorphic at the cusps".

<u>Fundamental domain</u> of τ on SL(2,Z): connected open subset such that no two points of D are equivalent under SL(2,Z)

THEOREM 2.12. Let
$$
D = \{z \in \mathbb{H} \mid |z| > 1, |\Re(z)| < 1/2\}
$$
.

(a) D is a fundamental domain for $\Gamma(1) = SL_2(\mathbb{Z})$; moreover, two elements z and z' of \bar{D} are equivalent under $\Gamma(1)$ if and only if (i) $\Re(z) = \pm 1/2$ and $z' = z \pm 1$, (then $z' = Tz$ or $z = Tz'$), or (ii) $|z| = 1$ and $z' = -1/z = Sz$.

A case study: I 2 \sim S 3

Constructing the Modular Forms

Under **S**: $Y(\alpha, \beta, \gamma) \rightarrow \tau^2 Y(\gamma, \alpha, \beta)$

representation of generators

$$
\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

$$
(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}
$$

A case study: I 2 \sim S 3

q-expansion of the Modular Forms

$$
Y_1(\tau) = \frac{1}{8} + 3q + 3q^2 + 12q^3 + 3q^4 \cdots,
$$

\n
$$
Y_2(\tau) = \sqrt{3}q^{1/2}(1 + 4q + 6q^2 + 8q^3 \cdots).
$$

\n
$$
Y_1(\tau) \gg Y_2(\tau)
$$
 for $\text{Im}(\tau) > 1$

Neutrino mass matrices from the Weinberg operator

Case a)
$$
(L_{e\mu}^2)_1 \otimes (Y^2)_1, (Y^3)_1, ..., (Y^n)_1
$$
 \longrightarrow $-2k_{e\mu}+2n=0, n=2...$
\nCase b) $(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$ \longrightarrow $-2k_{e\mu}+2n=0, n=1...$
\nCase c) $(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$ \longrightarrow $-k_{e\mu}-k_{e\tau}+2n=0, n=1...$
\nCase d) $(L_{\tau})^2 \otimes (Y^2)_1, (Y^3)_1, ..., (Y^n)_1$ \longrightarrow $-2k_{e\tau}+2n=0, n=2...$

3

(1)

Neutrino mass matrices from the Weinberg operator

(n=1)

3

Case b)
$$
(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2
$$
 \longrightarrow $-2k_{e\mu}+2n=0, n=1...$
\nCase c) $(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2$ \longrightarrow $-k_{e\mu}-k_{e\tau}+2n=0, n=1...$

 $Solutions:$ $k_{e\tau} = 0$ [$k_{e\mu} = 0$ $k_{e\tau} = 2$] [$k_{e\mu} = 1$ $k_{e\tau} = 1$]

$$
m_{\nu} = \begin{pmatrix} bY_2 & bY_1 & cY_1/2 \\ bY_1 & -bY_2 & cY_2/2 \\ cY_1/2 & cY_2/2 & 0 \end{pmatrix}
$$

 \vert \ast

Neutrino mass matrices from the Weinberg operator

 $Solutions:$ $k_{e\tau} = 2$ $\left[k_{e\mu} = 2 \right]$ $\left[k_{e\tau} \neq 2 \right]$ $\left[k_{e\mu} \neq 2 \right]$ $k_{e\tau} = 2$ Case a) $-2k_{e\mu}+4=0$ Case b) $-2k_{e\mu}+4=0$ Case c) $-k_{e\mu}-k_{e\tau}+4=0$ Case d) $-2k_{e\tau}+4=0$ $m_v =$ $(a+b)y_1^2+(a-b)y_2^2$ 2*b* y_1y_2 *c* y_1y_2 * $(a-b)y_1^2+(a+b)y_2^2 \quad 1/2c(y_1^2-y_2^2)$

* $d(y_1^2 + y_2^2)$

(n=2)

3

A case study: I 2 \sim S 3

Dedekind eta functions

$$
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}
$$

Under T:

\n
$$
\begin{cases}\n\eta(2 \tau) \rightarrow e^{i \pi/6} \eta(2 \tau) \\
\eta(\tau/2) \rightarrow \eta((\tau+1)/2) \\
\eta((\tau+1)/2) \rightarrow e^{i \pi/12} \eta(\tau/2)\n\end{cases}
$$

Under S:

\n
$$
\begin{aligned}\n\eta(2 \tau) &\to \sqrt{-i \tau/2} \eta(\tau/2) \\
\eta(\tau/2) &\to \sqrt{-2i \tau} \eta(2 \tau) \\
\eta\left(\frac{(\tau+1)}{2}\right) &\to e^{-i\pi/12} \sqrt{-i \tau(\sqrt{3}-i)} \eta\left(\frac{(\tau+1)}{2}\right)\n\end{aligned}
$$

 $Id[a_1, b_2] := \{\{Mod[a, b], 0\}, \{0, Mod[a, b]\}\}\$

$$
Id[-1, 2] \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

$$
Id[-1, 3] \qquad \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
$$