International Conference on Neutrinos and Dark Matter (NuDM-2022)

Modular symmetries and the flavor problem

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

S.King, talk at Bethe Forum on Modular Flavor Symmetries

The Flavor Problem

Mass hierarchies

$$m_d \ll m_s \ll m_b, \ \frac{m_d}{m_s} = 5.02 \times 10^{-2},$$

$$m_u \ll m_c \ll m_t, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3},$$

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};$$

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};$$

The Flavor Problem

$$m_d \ll m_s \ll m_b, \ \frac{m_d}{m_s} = 5.02 \times 10^{-2},$$

$$m_u \ll m_c \ll m_t$$
, $\frac{m_u}{m_c} = 1.7 \times 10^{-3}$,

$$\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18$$
 GeV;

$$\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};$$

Fermion mixing

almost a diagonal matrix

all mixing are large but the 13 element

 ν_e

 $\boldsymbol{\nu}$

* Smallness of neutrino masses:

See-saw

$$\mathcal{M} = \begin{bmatrix} \boldsymbol{m}_{M}^{L} & \boldsymbol{m}_{D} \\ \boldsymbol{m}_{D} & \boldsymbol{m}_{M}^{R} \end{bmatrix}$$
$$\boldsymbol{m}_{light} \sim \frac{\boldsymbol{m}_{D}^{2}}{\boldsymbol{M}_{M}^{R}}$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n \rightarrow e^{(-q_L + q_H + q_R + n * q_\theta)}$$

$$\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$$
$$m_{light} \sim \frac{m_D^2}{M_M^R}$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

- * Hierarchical Pattern
 - Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$$

Too many O(1) coefficients Works better for small mixing

$$\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$$
$$m_{light} \sim \frac{m_D^2}{M_M^R}$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

$$\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$$
$$m_{light} \sim \frac{m_D^2}{M_M^R}$$

No clue on mixing !

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n$$

Too many O(1) coefficients Works better for small mixing elegant explanation:

* mixing angles

non-Abelian discrete flavour symmetries

Complicated scalar sector

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called$ *homogeneous modular group* $<math>\Gamma$

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called$ *homogeneous modular group* $<math>\Gamma$

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called$ *homogeneous modular group* $<math>\Gamma$

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ

the group $\Gamma(N)$ acts on the complex variable τ (Im $\tau > 0$)

$$\gamma \tau = \frac{a \tau + b}{c \tau + d}$$

Important observation for N=1: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$\overline{\Gamma}(2) = \Gamma(2) / \{1, -1\}$$
since 1 and -1 **cannot** be distinguished

$$\overline{\Gamma}(N) = \Gamma(N) \qquad N > 2$$

since 1 and -1 can be distinguished

Important observation for N=1: a transformation characterized by parameters {a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

 $\Gamma(1)$ is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$\overline{\Gamma}(2) = \Gamma(2) / \{1, -1\}$$

since 1 and -1 **cannot** be distinguished

$$\overline{\Gamma}(N) = \Gamma(N) \qquad N > 2$$

since 1 and -1 **can** be distinguished

$$\Gamma_{N} = \frac{\overline{\Gamma}}{\overline{\Gamma}(N)}$$

Generators of $\boldsymbol{\Gamma}_{_{\!N}}$: elements S and T satisfying

$$S^{2}=1, (ST)^{3}=1, T^{N}=1$$

 $S=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T=\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$

corresponding to:

$$\tau \stackrel{s}{\rightarrow} -\frac{1}{\tau} \qquad \qquad \tau \stackrel{T}{\rightarrow} \tau + 1$$

Generators of $\Gamma_{_{\!N}}$: elements S and T satisfying

$$S^{2} = 1, \quad (ST)^{3} = 1, \quad T^{N} = 1$$
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$
$$\tau \xrightarrow{S} - \frac{1}{2} \qquad \qquad \tau \xrightarrow{T} \tau + 1$$

corresponding to:

$\tau \rightarrow -$		17
	l	

relevant for model building:

for N \leq 5, the finite modular groups Γ_{N} are isomorphic to non-Abelian discrete groups

$$\Gamma_{2} \simeq S_{3} \qquad \Gamma_{3} \simeq A_{4} \qquad \Gamma_{4} \simeq S_{4} \qquad \Gamma_{5} \simeq A_{5}$$

Then the question is: why Modular Symmetry ?

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$f(\gamma \tau) = (c \tau + d)^{2k} f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$$
 $2k = \text{weigth}, N = \text{level}$

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$f(\gamma \tau) = (c \tau + d)^{2k} f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$$
 $2k = \text{weigth}, N = \text{level}$

R. C. Gunning, Lectures on Modular Forms, Princeton, New Jersey USA, Princeton University Press 1962

N	$d_{2k}(\Gamma(N))$
2	k+1
3	2k + 1
4	4k + 1
5	10k + 1
6	12k
7	28k - 2

Key points:

1. Modular forms of weight 2k and level N \geq 2 are invariant, up to the factor $(c\tau + d)^{2k}$ under $\Gamma(N)$ but they transform under Γ_N ! $f_i(\gamma\tau) = (c \ \tau + d)^{2k} \rho(\gamma)_{ij} f_j(\tau)$ unitary representation of Γ_N

Key points:

- 1. Modular forms of weight 2k and level N \geq 2 are invariant, up to the factor $(c\tau + d)^{2k}$ under $\Gamma(N)$ but they transform under Γ_N ! $f_i(\gamma \tau) = (c \tau + d)^{2k} \rho(\gamma)_{ij} f_j(\tau)$ unitary representation of Γ_N
- 2. in addition, one assumes that the fields of the theory $\chi_{_{\!\!\!\!\!\!\!\!\!\!}}$ transforms non-trivially under $\Gamma_{_{\!\!\!\!\!N}}$

$$\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j$$

not modular forms ! No restrictions on ki Building blocks:

1. Modular forms and fields: $L_{\textit{eff}} \in f(\tau) imes \phi^{(1)} ... \phi^{(n)}$

Building blocks:

1. Modular forms and fields: $L_{\textit{eff}} \in f(\tau) imes \phi^{(1)} ... \phi^{(n)}$

2. Invariance under modular transformation requires:

$$2k = \sum_{i} k_{i}$$
$$\rho_{f} \otimes \rho_{\chi_{1}} \otimes \dots \otimes \rho_{\chi_{n}} \supset I$$

To start playing the game:

Can someone give me the Modular Forms?

Long list from S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022

For $(\Gamma_3 \simeq A_4)$, the generating (basis) modular forms of weight 2 were shown to form a 3 of A_4 (expressed in terms of log derivatives of Dedekind η -function η'/η of 4 different arguments).

F. Feruglio, arXiv:1706.08749

For $(\Gamma_2 \simeq S_3)$, the two basis modular forms of weight 2 were shown to form a 2 of S_3 (expressed in terms of η'/η of 3 different arguments).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For $(\Gamma_4 \simeq S_4)$, the 5 basis modular forms of weight 2 were shown to form a 2 and a 3' of S_4 (expressed in terms of η'/η of 6 different arguments).

J. Penedo, STP, arXiv:1806.11040

For $(\Gamma_5 \simeq A_5)$, the 11 basis modular forms of weight 2 were shown to form a 3, a 3' and a 5 of A_5 (expressed in terms of Jacobi theta function $\theta_3(z(\tau), t(\tau))$ for 12 different sets of $z(\tau), t(\tau)$).

P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:

i) for N = 4 (i.e., S_4), multiplets of weight 4 (weight $k \le 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);

ii) for N = 3 (i.e., A_4) multiplets of weight $k \le 6$ were found in arXiv:1706.08749;

iii) for N = 5 (i.e., A_5), multiplets of weight $k \le 10$ were derived in arXiv:1812.02158.

Model Building

Constructing the Modular Forms

Crucial observation:

if
$$g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^k g(\tau)$$

then $\frac{d}{d\tau} \log[g(\tau)] \rightarrow (c \tau + d)^2 \frac{d}{d\tau} \log[g(\tau)] + kc(c \tau + d)$

this term prevents of having a modular form of weight **2 k** = **2**

Model Building

Constructing the Modular Forms

Crucial observation:

$$\frac{d}{d\tau} \Sigma_i \log[g_i(\tau)] \rightarrow (c\tau + d)^2 \frac{d}{d\tau} \Sigma_i \log[g_i(\tau)] + (\Sigma_i k_i) c(c\tau + d)$$
with $\Sigma_i k_i = 0$

Let us find the functions $f(\tau)$!

The group S_3 contains 1 + 1' + 2

two independent modular forms can fit into a doublet of S₃

Let us find the functions $f(\tau)$!

The group S_3 contains 1 + 1' + 2

two independent modular forms can fit into a doublet of S₃

Dedekind eta functions
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$
 $q \equiv e^{i2\pi\tau}$

S:
$$\eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)$$
, T: $\eta(\tau+1) = e^{i\pi/12} \eta(\tau)$

 $\eta^{\mbox{\tiny 24}}$ is a modular form of weight 12

Constructing the Modular Forms

the system is closed under modular transformation

Constructing the Modular Forms

the system is closed under modular transformation

candidate modular form

 $Y(\alpha,\beta,\gamma) = \frac{d}{d\tau} \left[\alpha \log \eta(\tau/2) + \beta \log \eta((\tau+1)/2) + \gamma \log \eta(2\tau) \right]$

 $\alpha + \beta + \gamma = 0$

A case study: $\Gamma_2 \sim S_3$

Constructing the Modular Forms

Equations to be satisfied:

$$\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \quad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$(\rho(S))^2 = \mathbb{I}, \quad (\rho(S)\rho(T))^3 = \mathbb{I}, \quad (\rho(T))^2 = \mathbb{I}$$

A case study: $\Gamma_2 \sim S_3$

Constructing the Modular Forms

Equations to be satisfied:

$$\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

 $Y_1(\alpha,\beta,\gamma) \sim Y(1,1,-2)$

 $Y_2(\alpha,\beta,\gamma) \sim Y(1,-1,0)$

$$\begin{array}{lll} Y_1(\tau) &=& \frac{i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right) \\ Y_2(\tau) &=& \frac{\sqrt{3}i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right), \end{array}$$

doublet of S3: Y

representation of generators

 $\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$

For a satisfactory model, we ask:

- 1. small number of operators \rightarrow *predictability*
- 2. no new scalar fields beside Higgs(es) \rightarrow *symmetry breaking dictated by the vev of* τ

For a satisfactory model, we ask:

- 1. small number of operators \rightarrow *predictability*
- 2. no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ

	S ₃	SU(2)	k _i
L _{eμ} =(e,μ)	2	2	-1
L _τ	1	2	-1
H _u	1	2	0

For a satisfactory model, we ask:

- 1. small number of operators \rightarrow *predictability*
- 2. no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ

using one power of Y (modular form of lowest weight)

	S ₃	SU(2)	k _i
L _{eμ} =(e,μ)	2	2	-1
L _τ	1	2	-1
H _u	1	2	0

$$L = h_u^2 \Big[a \left((L_{e\mu} L_{e\mu})_2, Y \right)_1 + b L_\tau (L_{e\mu} Y)_1 \Big] \\ m_v = \begin{pmatrix} a Y_2 & a Y_1 & b Y_1/2 \\ a Y_1 & -a Y_2 & b Y_2/2 \\ b Y_1/2 & b Y_2/2 & 0 \end{pmatrix}$$

Mass matrix against the experimental data

$$m_{v} = \begin{pmatrix} a Y_{2} & a Y_{1} & b Y_{1}/2 \\ a Y_{1} & -a Y_{2} & b Y_{2}/2 \\ b Y_{1}/2 & b Y_{2}/2 & 0 \end{pmatrix}$$

$\sin^2 \theta_{12} / 10^{-1}$	$2.97^{+0.17}_{-0.16}$
$\sin^2 \theta_{13} / 10^{-2}$	$2.15_{-0.07}^{+0.07}$
$\sin^2 \theta_{23}/10^{-1}$	$4.25_{-0.15}^{+0.21}$
δ_{CP}/π	$1.38^{+0.23}_{-0.20}$
r	$2.92^{+0.10}_{-0.11} \times 10^{-2}$

5 observables, 2 complex parameters: a/b and $\tau \rightarrow$ very difficult task!

large χ^2 of O(100) mainly driven by θ_{13}

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated by modular forms

unified description of quarks and leptons

symmetry breaking by the vev of tau only

A lot to do:

mass hierarchy

more than one modulus

more pheno: leptogenesis, LFV...

Backup slides

Kahler potential

Under Γ:

$$\begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} \\ \varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)} \end{cases}$$

Tte invariance of the action requires the invariance of the superpotential $w(\Phi)$ and the invariance of the Kahler potential up to a Kahler transformation:

$$\begin{cases} w(\Phi) \to w(\Phi) \\ K(\Phi, \bar{\Phi}) \to K(\Phi, \bar{\Phi}) + f(\Phi) + f(\bar{\Phi}) \end{cases}$$

Kahler potential:

modular invariant kinetic terms

$$\frac{h}{\langle -i\tau + i\bar{\tau}\rangle^2} \partial_\mu \bar{\tau} \partial^\mu \tau + \sum_I \frac{\partial_\mu \overline{\varphi}^{(I)} \partial^\mu \varphi^{(I)}}{\langle -i\tau + i\bar{\tau}\rangle^{k_I}}$$

a <u>normal subgroup</u> (also known as an invariant subgroup or self-conjugate subgroup) is a *subgroup* which is invariant under conjugation by members of the group of which it is a part: a subgroup N of the group G is normal in G if and only if $(g n g^{-1}) \in N$ for all $g \in G$ and $n \in N$

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ , called *principal congruence subgroups*

the group $\Gamma(N)$ acts on the complex variable τ (Im $\tau > 0$)

$$\gamma \tau = \frac{a \tau + b}{c \tau + d}$$

And it can be shown that the upper half-plane is mapped to itself under this action. The complex variable is henceforth restricted to have positive imaginary part

Modular Functions and Modular Forms J. S. Milne

DEFINITION 0.2. A holomorphic function f(z) on \mathbb{H} is a modular form of level N and weight 2k if

(a)
$$f(\alpha z) = (cz+d)^{2k} \cdot f(z)$$
, all $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N);$

(b) f(z) is "holomorphic at the cusps".

<u>Fundamental domain</u> of τ on SL(2,Z): connected open subset such that no two points of D are equivalent under SL(2,Z)

- THEOREM 2.12. Let $D = \{z \in \mathbb{H} \mid |z| > 1, |\Re(z)| < 1/2\}.$
- (a) D is a fundamental domain for Γ(1) = SL₂(ℤ); moreover, two elements z and z' of D̄ are equivalent under Γ(1) if and only if
 (i) ℜ(z) = ±1/2 and z' = z ± 1, (then z' = Tz or z = Tz'), or
 - (ii) |z| = 1 and z' = -1/z = Sz.

A case study: $\Gamma_2 \sim S_3$

Constructing the Modular Forms

Under **T**: $Y(\alpha, \beta, \gamma) \rightarrow Y(\gamma, \beta, \alpha)$

Under S: $Y(\alpha,\beta,\gamma) \rightarrow \tau^2 Y(\gamma,\alpha,\beta)$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$$

A case study: $\Gamma_2 \sim S_3$

q-expansion of the Modular Forms

$$Y_{1}(\tau) = \frac{1}{8} + 3q + 3q^{2} + 12q^{3} + 3q^{4} \cdots,$$

$$Y_{2}(\tau) = \sqrt{3}q^{1/2}(1 + 4q + 6q^{2} + 8q^{3} \cdots).$$

$$Y_{1}(\tau) \gg Y_{2}(\tau) \qquad \text{for Im}(\tau) >> 1$$

<u>Neutrino mass matrices</u> from the Weinberg operator

	S ₃	SU(2)	k _i
L _{eμ} =(e,μ)	2	2	$k_{e\mu}$
L _τ	1	2	k _τ
H _u	1	2	0

Case a)	$(L^2_{e\mu})_1 \otimes (Y^2)_1, (Y^3)_1, \dots, (Y^n)_1$	$-2k_{e\mu}+2n=0$, $n=2$
Case b)	$(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, \dots, (Y^n)_2$	$-2k_{e\mu}+2n=0$, $n=1$
Case c)	$(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, \dots, (Y^n)_2$	$-k_{e\mu}-k_{e\tau}+2n=0$, $n=1$
Case d)	$(L_{\tau})^2 \otimes (Y^2)_1, (Y^3)_1, \dots, (Y^n)_1$	$-2k_{e\tau}+2n=0, n=2$

(1)

<u>Neutrino mass matrices</u> from the Weinberg operator

(n=1)

Case b)
$$(L_{e\mu}^2)_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2 \longrightarrow -2k_{e\mu} + 2n = 0, n = 1...$$

Case c) $(L_{e\mu}L_{\tau})_2 \otimes Y, (Y^2)_2, (Y^3)_2, ..., (Y^n)_2 \longrightarrow -k_{e\mu} - k_{e\tau} + 2n = 0, n = 1...$

Solutions:
$$[k_{e\mu}=1 \quad k_{e\tau}=0] \quad [k_{e\mu}=0 \quad k_{e\tau}=2] \quad [k_{e\mu}=1 \quad k_{e\tau}=1]$$

$$m_{v} = \begin{pmatrix} bY_{2} & bY_{1} & cY_{1}/2 \\ bY_{1} & -bY_{2} & cY_{2}/2 \\ cY_{1}/2 & cY_{2}/2 & 0 \end{pmatrix}$$

Neutrino mass matrices from the Weinberg operator

(n=2) Case a) $\rightarrow -2k_{e\mu}+4=0$ Case c) $\rightarrow -k_{e\mu}-k_{e\tau}+4=0$ Case b) $\rightarrow -2k_{e\mu}+4=0$ Case d) $\rightarrow -2k_{e\tau}+4=0$

Solutions: $[k_{e\mu}=2 \quad k_{e\tau}=2] \quad [k_{e\mu}=2 \quad k_{e\tau}\neq2] \quad [k_{e\mu}\neq2 \quad k_{e\tau}=2]$

$$m_{v} = \begin{pmatrix} (a+b) y_{1}^{2} + (a-b) y_{2}^{2} & 2b y_{1} y_{2} & c y_{1} y_{2} \\ * & (a-b) y_{1}^{2} + (a+b) y_{2}^{2} & 1/2 c (y_{1}^{2} - y_{2}^{2}) \\ * & * & d (y_{1}^{2} + y_{2}^{2}) \end{pmatrix}$$

A case study: $\Gamma_2 \sim S_3$

Dedekind eta functions

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}$$

Under T:

$$\eta(2\tau) \rightarrow e^{i\pi/6} \eta(2\tau)$$

$$\eta(\tau/2) \rightarrow \eta((\tau+1)/2)$$

$$\eta((\tau+1)/2) \rightarrow e^{i\pi/12} \eta(\tau/2)$$

Under S:
$$\begin{cases} \eta(2\tau) \rightarrow \sqrt{-i\tau/2} \eta(\tau/2) \\ \eta(\tau/2) \rightarrow \sqrt{-2i\tau} \eta(2\tau) \\ \eta\left(\frac{(\tau+1)}{2}\right) \rightarrow e^{-i\pi/12} \sqrt{-i\tau(\sqrt{3}-i)} \eta\left(\frac{(\tau+1)}{2}\right) \end{cases}$$

 $Id[a_, b_] := \{ \{Mod[a, b], 0\}, \{0, Mod[a, b]\} \}$

$$Id[-1, 2] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$Id[-1, 3] \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$