Minimal type-II seesaw model with alternative U(1)_X and cosmology

Osamu Seto (Hokkaido University)

With Nobuchika Okada (U. of Alabama) Ref Phys. Rev. D **105**, 123512 (2022)

§ Introduction

Nonvanishing neutrino mass

- Neutrino oscillation tiny (< 0.1 eV) but massive neutrino
- Seesaw mechanism for Majorana neutrino [Minkowski (1977), Yanagida, Gell-Mann et al (1979)] $\begin{pmatrix} 0 & yv \end{pmatrix} \qquad \begin{pmatrix} -(yv)^2/M_N & 0 \end{pmatrix}$
 - $\begin{pmatrix} 0 & yv \\ yv & M_N \end{pmatrix} \rightarrow \begin{pmatrix} -(yv)^2/M_N & 0 \\ 0 & M_N \end{pmatrix}$
- Majorana M_N mass might come from the breaking of the gauged B-L symmetry. [Davidson (1979), Mohapatra and Marshak (1980), ...]

Anomaly cancellation for gauged B-L

• Two choices of RH neutrino charges

Field	standard	alternative	
$\nu_R^1, \nu_R^2, \nu_R^3$	-1,-1,-1	-4,-4,+5	

- Once the charges are set to be anomaly free under $U(1)_Y$ and $U(1)_{B-L}$, it is so under a linear combination $X = x_H Y + (B - L)$ too.
 - Convenient parametrization
 - $x_H = 0, U(1)_{B-L}$
 - $x_H = -2, U(1)_R$ [Jung et al (2010)]

Anomaly cancellation for gauged B-L

• Two choices of RH neutrino charges

Field	standard	alternative	
$\nu_R^1, \nu_R^2, \nu_R^3$	-1,-1,-1	-4,-4,+5	

- The standard is standard.
- For the alternative, Type-I seesaw and Majorana mass is not easy [Ma and Srivastava, Sanchez-Vega and Schmitz (2015), ..., Asai, Nakayama and Tseng (2021)]
- How about Type-II?
- Type-II by triplet Higgs [Schechter and Valle, Magg and Wetterich, Cheng and Li (1980)]

§ Model

- Alternative charge of $U(1)_X$
- Type-II

§ § Particle content

- The anomaly cancellation fixes fermions
- Triplet Δ for neutrino mass
- Φ₁ for the tadpole of Δ
 ➢ No Yukawa
- Φ_X
 - \succ U(1) breaking
 - \succ Mass of ν_R
 - Mass of NG (CP odd Higgs)
- $v_R^i v_R^3$: stable, dark matter

				(.)
	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
q_L^i	3	2	$\frac{1}{6}$	$\frac{1}{6}x_{H} + \frac{1}{3}$
u_R^i	3	1	$\frac{2}{3}$	$\frac{2}{3}x_H + \frac{1}{3}$
d_R^i	3	1	$-\frac{1}{3}$	$-\frac{1}{3}x_{H} + \frac{1}{3}$
l_L^i	1	2	$-\frac{1}{2}$	$-\frac{1}{2}x_H - 1$
e_R^i	1	1	-1	$-x_{H} - 1$
ν_R^1	1	1	0	-4
ν_R^2	1	1	0	-4
$ u_R^3 $	1	1	0	5
Φ_1	1	2	$\frac{1}{2}$	$\frac{1}{2}x_{H} + 1$
Φ_2	1	2	$\frac{1}{2}$	$\frac{1}{2}x_H$
Δ_3	1	3	1	$x_H + 2$
Φ_X	1	1	0	1

§ § Interactions and masses

•
$$\mathcal{L} \supset -\frac{1}{\sqrt{2}} Y_{\Delta}^{ij} \overline{l_L^{iC}} \cdot \Delta l_L^j - \sum_{i=1,2} Y_{\nu_R^i} \Phi_X^{\dagger} \overline{\nu_R^{3C}} \nu_R^i + \text{H.c.}$$

• LH Neutrino mass

$$(m_{\nu})_{ij} = Y_{\Delta}^{ij} v_{\Delta}$$

§ § Interactions and masses

• RH Neutrino mass

$$\mathcal{L} \supset -(\nu_{R}^{1\dagger}, \nu_{R}^{2\dagger}, \nu_{R}^{3T}) \begin{pmatrix} 0 & 0 & Y_{\nu_{R}^{1}} \\ 0 & 0 & Y_{\nu_{R}^{2}} \\ Y_{\nu_{R}^{1}} & Y_{\nu_{R}^{2}} & 0 \end{pmatrix} \frac{\nu_{X}}{\sqrt{2}} \begin{pmatrix} \nu_{R}^{1} \\ \nu_{R}^{2} \\ \nu_{R}^{3*} \end{pmatrix}$$

- One massless v_R : Dark radiation
- Two compose one Dirac χ : Dark matter candidate

$$m_{\chi} = \sqrt{\frac{Y_{\nu_R^1}^2 + Y_{\nu_R^2}^2}{2}} v_X$$

§ § Interactions and masses

One singlet, two doublet, one triplet $\Phi_1^{\dagger}\Phi_2, \left(\Phi_1^{\dagger}\Phi_2\right)^2 \notin V$ • $V \supset \lambda_{12} \Phi_X (\Phi_1^{\dagger} \Phi_2) - \frac{\Lambda_6}{\sqrt{2}} (\Phi_1^T \cdot \Delta_3 \Phi_1) + \text{H.c.}$ pseudo-scalar mass $v_{\Delta} \cong \frac{v_1^2 \Lambda_6}{2\mu_2^2} \propto v_1^2$

Small neutrino mass due to the small Higgs VEV Philosophy of neutrinophilic Higgs model

§ § Implication

- $H^{\pm\pm}$ decay
 - $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$
 - $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$

• Very small v_{Δ} from slightly small v_1

§ § Cosmology

- Dark radiation
 - One massless
 - Interaction $f\bar{f} \leftrightarrow \nu_R \nu_R$ through $U(1)_X$ [Heeck (2014), Fileviez Perez, Murgui and Plascencia (2019)]
- Dark matter
 - Stable due to charge mismatch, not a parity
 - $U(1)_X$ interacting Dirac fermion
 - Abundance : Z' resonance annihilation
 - Direct search bounds : SI from the vector interaction via Z'

§ § Experimental constraints

- *ρ* parameter
- The Z boson decay width [Kanemura et al (2013)]
- LFV [Chun et al, Kakizaki et al (2003), Akeroyd et al (2009)]
- $H^{\pm\pm}$ search at the LHC [ATLAS (2018, 2021)]
- *X* boson search at the LHC
 - $pp \rightarrow X \rightarrow l\bar{l}, pp \rightarrow X \rightarrow jj$
 - The most severe bound from dilepton $l\bar{l}$ $(l = e, \mu)$
- DM abundance and direct search bound
- DR abundance (N_{eff})

§ Summary

- Alternative B-L charge: possibility
 - Compatible with Type-II seesaw
 - Minimal Higgs sector
 - "Neutrinophilic"
 - Same sign di-lepton is likely
 - Anomaly cancellation requires DR and Dirac DM
 - WIMP DM without a parity by hand
- Constraints are derived for LHC, DR and DM

§ § Experimental constraints

- ρ parameter
 - $v_{\Delta} \lesssim 1 \text{ GeV}$
- The Z boson decay width [Kanemura et al (2013)]
- $H^{\pm\pm}$ search at the LHC
 - \gtrsim 880 GeV for ll [ATLAS (2018)]
 - \gtrsim 350 GeV for *WW* [ATLAS (2021)]
- LFV [Chun et al, Kakizaki et al (2003), Akeroyd et al (2009)]
 - SINDRUM for $\mu \rightarrow eee$
 - MEG for $\mu \rightarrow e\gamma$
 - $v_{\Delta} \gtrsim 1 \text{ eV}$

§ § Experimental constraints

- *X* boson search at the LHC
 - $pp \rightarrow X \rightarrow l\bar{l}, pp \rightarrow X \rightarrow jj$
 - The most severe bound from dilepton $l\bar{l} (l = e, \mu)$
- Under the narrow width approximation, we calculate

•
$$\sigma(pp \to X) \operatorname{Br}(X \to l\bar{l})$$

•
$$\operatorname{Br}(X \to l\bar{l}) = \frac{8+12x_H+5x_H^2}{F(x_H)}$$

• $F(x_H) = 13 + 16x_H + 10x_H^2$