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Outline

I Parameter fine-tuning problem in quintessence models for
addressing coincidence problem.

I Quintessence coupled with neutrinos.

I Fine-tuning problem of initial conditions in quintessence
coupled with neutrinos.

I Inflationary quintessence model.

I Neutrino lumps.



Runaway model based on Ratra-Peebles potential.

U(φ) = V (MP/φ)α .

In this model the dark energy is a slow roll phenomenon.
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φ & MP marks the onset of DE.

V should be taken to be of the same order of magnitude as ρ0DE .

B. Ratra & P. J. E. Peebles, ”Cosmological Consequences of a
Rolling Homogeneous Scalar Field,” Phys. Rev. D37 (1988) 3406.



Mass varying neutrino model.

This sort of models are based on the coupling between quintessence
and neutrinos and intend to relate the present dark energy density to
the neutrino mass-scale, 0.05 eV, in order to mitigate the parameter
fine-tuning problem of quintessence dark energy.

The late-time predominance of DE is caused by the back-reaction on
the quinton field due to neutrinos after they enter the non-relativistic
regime: Tν ' 0.05 eV.

R. Fardon, A. E. Nelson & N. Weiner, ”Dark energy from mass
varying neutrinos,” JCAP 10 (2004) 005.



The equations of motion.

Model is based on action functional
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in a flat FLRW metric

ds2 = dt2 − a2(t)dx2 .



The equations of motion.

The variation with respect to φ results in−m′νψ̄νψν from the fermion
sector, which can be expressed as

−m′νψ̄νψν =
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mν

Tα
α =

m′ν
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(ρν − 3pν) .

As a next step one takes a finite-temperature expression in order to
describe CNB.
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Free streaming neutrinos.
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g counts two helicity states per flavor: g = 2×number of neutrino species.



Non-relativistic regime for CNB.

We expect two mass eigenstates to be non-relativistic at present
since present CNB temperature T 0

ν ' 1.67× 10−4 eV and neutrino
masses (in normal hierarchical spectrum) are

m1 � m2 < m3 , m2 ∼ 8.6× 10−3 eV m3 ∼ 0.05 eV .

Correspondingly m2/T
0
ν ∼ 51.5 and m3/T

0
ν ∼ 300.

In non-relativistic approximation

ρν =
3gmνζ(3)T 3

ν

4π2
≡ nνmν ,

and one arrives at the system of equations

ṅν + 3Hnν = 0 ⇒ nν ∝ a−3 , φ̈+ 3Hφ̇+ U ′(φ) = −m′ν(φ)nν .



Approximate analytical solution.

The minimum of effective potential
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= 0 , (1)

gives an approximate solution. The system of equations we obtained
can be put in the form

d
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If the slow roll conditions

φ̇2+ � mν(φ+)nν , |φ̈+φ̇+| � 3Hmν(φ+)nν .

are satisfied, then Eq.(2) is reduced to Eq.(1).



Dark energy.

Some preliminary constraints on the model are as follows.

ω(t0) = − U(φ+(t0))

U(φ+(t0)) + ρν
= − 0.9 ⇒

U(φ+(t0)) = 9ρ0ν , ρ0DE = 10ρ0ν , mν

(
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)
=
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10n0ν
.

The condition for accelerating expansion

2U(φ+) > ρ0r (1 + z)4 +
(
ρ0m + mν(φ+)n0ν

)
(1 + z)3 .



Runaway model: U(φ) = V e−αφ/MP , mν(φ) = µνe
βφ/µν .

Here the parameters α, β ∼ 1.

U = V e−αφ/MP + nν(t)µνe
βφ/µν ⇒ φ+(t) =
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.
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requires that V /µν is large enough. The growth of neutrino mass is
unlimited

mν(φ+) = µν
αV

βnν(t)MP
.

One can set V by demanding m0
ν = µν .



The cosmological equations can be written in phase-space variables
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This system has a stable critical point (ζ?1 , ζ
?
2 , ζ

?
3 ) where
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C. Wetterich, “The Cosmon model for an asymptotically vanishing
time dependent cosmological ’constant’,” Astron. Astrophys. 301,
321–328 (1995), arXiv:hep- th/9408025.

L. Amendola, “Coupled quintessence,” Phys. Rev. D 62, 043511
(2000), arXiv:astro-ph/9908023.

C. Wetterich, “Growing neutrinos and cosmological selection,” Phys.
Lett. B 655, 201–208 (2007), arXiv:0706.4427 [hep-ph].



Inflationary quintessence: Z2 symmetric potential and φ-ν coupling

U(φ) = V
(

1− e−αφ
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)
, mν(φ) = µνe

−βφ2/M2
P .

The potential we have chosen has an (infinitely) long plateau for
φ2 & M2

P/α and provides perfect conditions for the inflation as the
field rolling down will arrive at the attractor from a very wide range
of initial conditions. The slow-roll parameters are defined as
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The end of inflation occurs for φf at which ε(φf ) ' 1.

φf '


0.27×MP for α = 1 ,

0.25×MP for α = 4 ,

0.22×MP for α = 9 ,

0.2×MP for α = 16 .



Inflationary quintessence.
Demanding the e-folding number to be around 60, one finds

φi '


1.35×MP for α = 1 ,

1.1×MP for α = 4 ,

0.81×MP for α = 9 ,

0.65×MP for α = 16 .

The slow-roll parameters can be used to express the spectral index,
its derivative and tensor-to-scalar ratio as

ns = 1− 6ε+ 2η ,
dns

d ln k
= 16εη − 24ε2 − 2ξ , r = 16ε .

To fit the present observational data

ns = 0.9649± 0.0042 , r < 0.06 ,
dns

d ln k
= −0.0045± 0.0067 ,

the parameter α should satisfy α & 6.4.



Inflationary quintessence.

As to the the energy scale of inflation, V , it is commonly expected
to lie approximately between the TeV and Planck scales. It is related
to the amplitude of tensor modes

V 1/4 ' 3.3× 1016r1/4GeV ,

indicating that the ”detectable” gravitational waves require

V 1/4 ' 1016GeV ,

In general, such a big value is not typical for the existing models of
inflation. In what follows we admit the whole ”possible” range of
parameter V but for the discussion of nuggets it is favorable to take
this parameter near the lower bound.
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Inflationary quintessence.

We assume cold inflation throughout of our discussion. Warm infla-
tion is conceptually different. It assumes that for sizable couplings of
inflaton with the matter fields, the particle production becomes ap-
preciable at early stages and the equation of motion for the inflaton
gets modified by the presence of an additional friction term

φ̈+ (3H + Υ)φ̇ = −U ′(φ) , ρ̇r + 4Hρr = Υφ̇2 .

Of course, in all cold inflation models there are couplings of inflaton
with the matter fields to produce an ordinary matter in the universe
but it is assumed that particle production becomes appreciable only
after the exit of inflation when field enters the oscillation regime
near the minimum.



Inflationary quintessence.

Instant preheating, which is inevitable for the runaway type poten-
tials of quintessential inflation having no oscillation regime

C.-Q. Geng, Md. Wali Hossain, R. Myrzakulov, M. Sami, E. N.
Saridakis, “Quintessential inflation with canonical and noncanonical
scalar fields and Planck 2015 results,” Phys.Rev.D 92 (2015) 2,
023522, arXiv:1502.03597 [gr-qc].

C.-Q. Geng, C.-C. Lee, M. Sami, E. N. Saridakis, and A. A. Starobin-
sky, “Observational constraints on successful model of quintessential
Inflation,” JCAP 06 (2017) 011, arXiv:1705.01329 [gr-qc].

is not required in the present case.



Inflationary quintessence.

The role of neutrinos is that they activate inflaton at the early stage
of Big-Bang (after the termalization of the early universe) leading
to the dynamical braking of Z2 symmetry.

φ

U(φ)

Ueff (φ)

φ+φ−

Figure: The symmetry breaking effective potential.



Inflationary quintessence.

Above the decoupling temperature one has to use the equilibrium
distribution for neutrinos, which for the effective potential gives

Ueff (φ,Tν) = U(φ)− pν(φ,Tν) .

Expanding pν(φ,Tν) in a power series in m2
ν/T

2
ν , one obtains

pν(φ,Tν) =
gT 4

ν
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.

The φ dependent expression of the effective potential looks like
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48
.



Inflationary quintessence.
The onset of dark energy begins when Tν ' mν . The effective
potential

Ueff (φ) = V
(

1− e−αφ
2/M2

P

)
+ nνµνe

−βφ2/M2
P ,

has degenerate minima
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= ±
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.

When

βnνµν
αV

= 1 ,

the symmetry restoration takes place.



Inflationary quintessence.
The neutrino masses increase in such a way

mν(φ+) = µνe
−βφ2+/M2

P ≈ αV

βnν
,

that the neutrino energy density

ρν = nνmν ≈
αV

β
= const. .

The condition ρ0DE = 10ρ0ν implies that β ' 1058. It is curious to
note that for this value of β - the mass scale M2

P/β appearing in

mν(φ) = µνe
−βφ2/M2

P ,

is of the order of µ2ν . That is, a natural reparametrization of coupling
function is tantamount to the replacement MP → µν and therefore
µν appears as a sole dimensional parameter in the coupling function.



Inflationary quintessence.

Interestingly enough, the broad class of inflationary potentials de-
rived in

R. Kallosh and A. Linde, ”Universality Class in Conformal Inflation,”
JCAP 07 (2013) 002, arXiv:1306.5220 [hep-th].

as a result of spontaneously broken conformal symmetry, can be
straightforwardly used in the above discussion with the same φ-ν
coupling term (which is certainly taken by hand).

The construction similar to what we have discussed may work with-
out demanding Z2 symmetry for the inflaton potential. For instance,
one may consider Starobinsky-like models.

Z. Kepuladze and M. Maziashvili, ”New take on the inflationary
quintessence,” Phys. Rev. D103 (2021) 6, 063540; arXiv:2102.09203
[astro-ph.CO].



Neutrino lumps.

Forgetting about gravitation, let us consider perturbations

φ→ φ+ + χ , ψ̄νψν → nν + ψ̄νψν .

The Lagrangian takes the form

∂αχ∂
αχ

2
−

(
U ′′(φ+) + m′′ν(φ+)nν

)
χ2

2
+

iψ̄γα∂αψ −m′ν(φ+)χψ̄ψ + C.C. + H.T. ,

where C.C. denotes complex conjugate and H.T. stands for the
higher order terms.



Neutrino lumps.

One sees that there is an attractive force between the neutrinos
mediated by the exchange of χ quanta. Its Yukawa potential

−

(
m′ν(φ+)

)2
exp

(
−
√

U ′′(φ+) + m′′ν(φ+)nν r
)

4πr
,

where r stands for the physical distance, is characterized with the
screening length

1√
U ′′(φ+) + m′′ν(φ+)nν

=
1√

U ′′eff (φ+)
≡ 1

meff (φ+)
.

This force leads to the growth of neutrino density perturbations.

N. Afshordi, M. Zaldarriaga and K. Kohri, ”On the stability of
dark energy with mass-varying neutrinos,” Phys. Rev. D72 (2005)
065024; arXiv:astro-ph/0506663.



Top issues to be addressed.

How does model look after the neutrino clumping? In other words,
what’s the back-reaction of these climps on the cosmological evolu-
tion?

The stability of mass-varying neutrino models against the radiative
corrections. As most of the models are non-renormalizable, it’s hard
to evaluate the size of one-loop corrections ”properly”.

What’s the proper picture of above described inflationary quintessence
model at early stages (prior to the Big-Bang)?



Thanking you for your kind interest!


