

DARK MATTER FREEZE-OUT AND FREEZE-IN BEYOND KINETIC EQUILIBRIUM

Andrzej Hryczuk

based on:

A.H. & M. Laletin [2204.07078](https://arxiv.org/abs/2204.07078)

A.H. & M. Laletin [2104.05684](https://arxiv.org/abs/2104.05684)

and **T. Binder, T. Bringmann, M. Gustafsson & A.H.** [1706.07433](http://astro-ph.co/1706.07433)**,** [2103.01944](https://arxiv.org/abs/2103.01944)

NuDM 2022

andrzej.hryczuk@ncbj.gov.pl

28th September 2022

TO SEE WHY AND LEARN MORE STAY TUNED :)

THERMAL RELIC DENSITY STANDARD SCENARIO

THERMAL RELIC DENSITY
STANDARD SCENARIO

time evolution of $f_\chi(p)$ in kinetic theory:

$$
E(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}) f_\chi = \mathcal{C}[f_\chi]
$$

Liouville operator in

Fouville operator in

Liouville operator in FRW background

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_\chi = \mathcal{C}[f_\chi]$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

> …for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 dn_χ $\frac{d\mathcal{L}}{dt} + 3Hn_\chi = -\langle \sigma_{\chi\bar\chi \to ij} \sigma_{\rm rel}\rangle.$ $\int_{0}^{\infty} \left(n_{\chi} n_{\bar{\chi}} - n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq} \right)$ $\overline{)}$ $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_\chi = \mathcal{C}[f_\chi]$ $\sum_{i=1}^{n}$ integrate over *p* (i.e. take 0th moment)

where the thermally averaged cross section:

$$
\langle \sigma_{\chi\bar{\chi}\to ij} v_{\text{rel}} \rangle^{\text{eq}} = -\frac{h_{\chi}^2}{n_{\chi}^{\text{eq}} n_{\bar{\chi}}^{\text{eq}}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij} v_{\text{rel}} f_{\chi}^{\text{eq}} f_{\bar{\chi}}^{\text{eq}}
$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

> …for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_\chi = \mathcal{C}[f_\chi]$ classical limit, molecular chaos,... …for derivation from thermal QFT $\sum_{i=1}^{n}$ see e.g., 1409.3049 integrate over *p* (i.e. take 0th moment) dn_χ $\int_{0}^{\infty} \left(n_{\chi} n_{\bar{\chi}} - n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq} \right)$ $\overline{)}$ $\frac{d\mathcal{L}}{dt} + 3Hn_\chi = -\langle \sigma_{\chi\bar\chi \to ij} \sigma_{\rm rel}\rangle.$ $\mathcal{V}_{\mathcal{A}}$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel}\rangle^{\rm eq} = -\frac{h_\chi^2}{n_{\rm eq}^{\rm eq}n_{\rm eq}}$ $\int d^3 \vec{p}_{\chi}$ $d^3\vec{p}_{\bar{\chi}}$ 0.001 χ $\frac{a\,\, p_{\bar{\chi}}}{(2\pi)^3}\,\, \sigma_{\chi\bar{\chi}\rightarrow ij}v_{\rm rel}\,\, f^{\rm eq}_{\chi}f^{\rm eq}_{\bar{\chi}}$ 0.0001 $\overline{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}}$ $(2\pi)^3$ $10¹$ increasing $\langle \sigma v \rangle$ 10 Dersity $10²$ IV) I0. **Number** 1973 10.8 10^{-3} Comoving 10 10° 10 10^{-10} $10-17$ 10^{-10} $\, n \,$ \mathbf{v} eq $10 - 1$ 10-40 u. 10.0 time \rightarrow $x = m/T$ Fig.: Jungman, Kamionkowski & Griest, PR'96

*assumptions for using Boltzmann eq:

Boltzmann equation for $f_{\chi}(p)$: *assumptions for using Boltzmann eq: $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_\chi = \mathcal{C}[f_\chi]$ classical limit, molecular chaos,... …for derivation from thermal QFT $\sum_{i=1}^{n}$ see e.g., 1409.3049 integrate over *p* (i.e. take 0th moment) dn_χ $\int_{0}^{\infty} \left(n_{\chi} n_{\bar{\chi}} - n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq} \right)$ $\overline{)}$ $\frac{d\mathcal{L}}{dt} + 3Hn_\chi = -\langle \sigma_{\chi\bar\chi \to ij} \sigma_{\rm rel}\rangle.$ $\mathcal{V}_{\mathcal{A}}$ where the thermally averaged cross section: 0 Or $\langle \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel}\rangle^{\rm eq} = -\frac{h_\chi^2}{n_{\rm eq}^{\rm eq}n_{\rm eq}}$ $\int d^3 \vec{p}_{\chi}$ $d^3\vec{p}_{\bar{\chi}}$ 0.001 χ $\frac{a\,\, p_{\bar{\chi}}}{(2\pi)^3}\,\, \sigma_{\chi\bar{\chi}\rightarrow ij}v_{\rm rel}\,\, f^{\rm eq}_{\chi}f^{\rm eq}_{\bar{\chi}}$ 0.0001 $\overline{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}}$ $(2\pi)^3$ $10¹$ increasing $\langle \sigma v \rangle$ Deraity \mathbf{m} **IV** I0. 207 1973 F 10.11 ğ. 10^{-14} **Critical assumption:** loving 10.8 10° kinetic equilibrium at chemical decoupling 10 10^{-10} $10-17$ $f_\chi \sim a(T) f_\chi^{\text{eq}}$ 10^{-10} $\, n \,$ $10 - 1$ 10-40 10.0 $x = m/T$ time \rightarrow Fig.: Jungman, Kamionkowski & Griest, PR'96

FREEZE-OUT *VS*. DECOUPLING 'ZE-OUT *VS*. DECC UUI VS. DECUUI

for the same analytic function $\mathbf{f}(\mathbf{r})$ of the momenta, but for the pair production this function that $\mathbf{f}(\mathbf{r})$ Boltzmann suppression of DM vs. SM \implies scatterings typically more frequent

annihilation (elastic) scattering

$$
\sum_{\text{spins}} |\mathcal{M}^{\text{scatt}}|^2 = F(k, -k', p', -p)
$$

M vs. SM \implies scatterings <u>typically</u> more frequent

Relations such as (9) between processes described by similar Feynman diagrams (but the processes described by s
The experimental few numbers of the experimental few numbers (but the experimental few numbers of the experime External processes described by similar Feynman diagrams (but as (1998). Schwarz, Widern '99; Green, Hofmann, Schwarz '05 dark matter frozen-out but typically still kinetically coupled to the plasma

EARLY KINETIC DECOUPLING? el *H* ⇠ ann (21)

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $\ H\sim \Gamma_{\rm ann} \gtrsim \Gamma_{\rm el}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM

e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,…

D) Multi-component dark sectors

e.g., additional sources of DM from late decays, …

HOW TO GO BEYOND KINETIC EQUILIBRIUM?

All information is in the full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$
E(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}) f_{\chi} = C[f_{\chi}]
$$
 contains both scatterings and
annihilations

NEW TOOL! GOING BEYOND THE STANDARD APPROACH

- · Home
- · Downloads
- Contact

Applications:

DM relic density for any (user defined) model*

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk

DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models. DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

. DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium, Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user quide can be found in the Appendix A of this reference. Please cite also quoted other works applying for specific cases.

v1.0 « Click here to download DRAKE

(March 3, 2021)

<https://drake.hepforge.org>

Interplay between chemical and kinetic decoupling

> Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology

…

see e.g., 1202.5456

(only) prerequisite: *Wolfram Language* (or *Mathematica*)

* at the moment for a single DM species and w/o \sim 8 co-annihilations... but stay tuned for extensions!

EXAMPLE D: WHEN ADDITIONAL INFLUX OF DM ARRIVES

D) Multi-component dark sectors

Sudden injection of more DM particles distorts *f ^χ*(*p*) (e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?

AH, Laletin 2204.07078

EXAMPLE EVOLUTION

FREEZE-IN:

C) with semi-annihilation process

HOW ABOUT SEMI-PRODUCTION?

AH, Laletin 2104.05684 (see also Bringmann et al. 2103.16572)

Consider process of production that is the inverse of semi-annihilation:

What is different (from the decay/pair-annihilation freeze-in)?

- The production rate is proportional to the DM density. (Smaller initial abundance \rightarrow larger cross section...)
- Semi-production modifies the energy of DM particles in a non-trivial way, so the temperature evolution can affect the relic density

EVOLUTION

EVOLUTION

The full calculation compared to one assuming $T_\chi = T$ can differ by more than order of magnitude!

INDIRECT DETECTION

- The results of the scan in the parameter space for the DM production dominated by the semi-annihilation processes.
- The coloured squares indicate the points, which are within the reach of the future searches for the mediator ϕ and the <code>empty</code> ones are beyond these prospects.
- The points above the grey dotdashed line can potentially explain the core formation in dSph [1803.09762]

SUMMARY

1. Kinetic equilibrium is a necessary (often implicit) assumption for standard relic density calculations in all the numerical tools... …while it is not always warranted!

2. Much more accurate treatment comes from solving the full phase space Boltzmann equation (fBE) to obtain result for $f_{\rm DM}(p)$ where one can study also self-thermalization from self-scatterings

3. Introduced DRAKE^{\$}: a new tool to extend the current capabilities to the regimes beyond kinetic equilibrium

4. Multi-component sectors, when studied at the fBE level, can reveal quite unexpected behavior