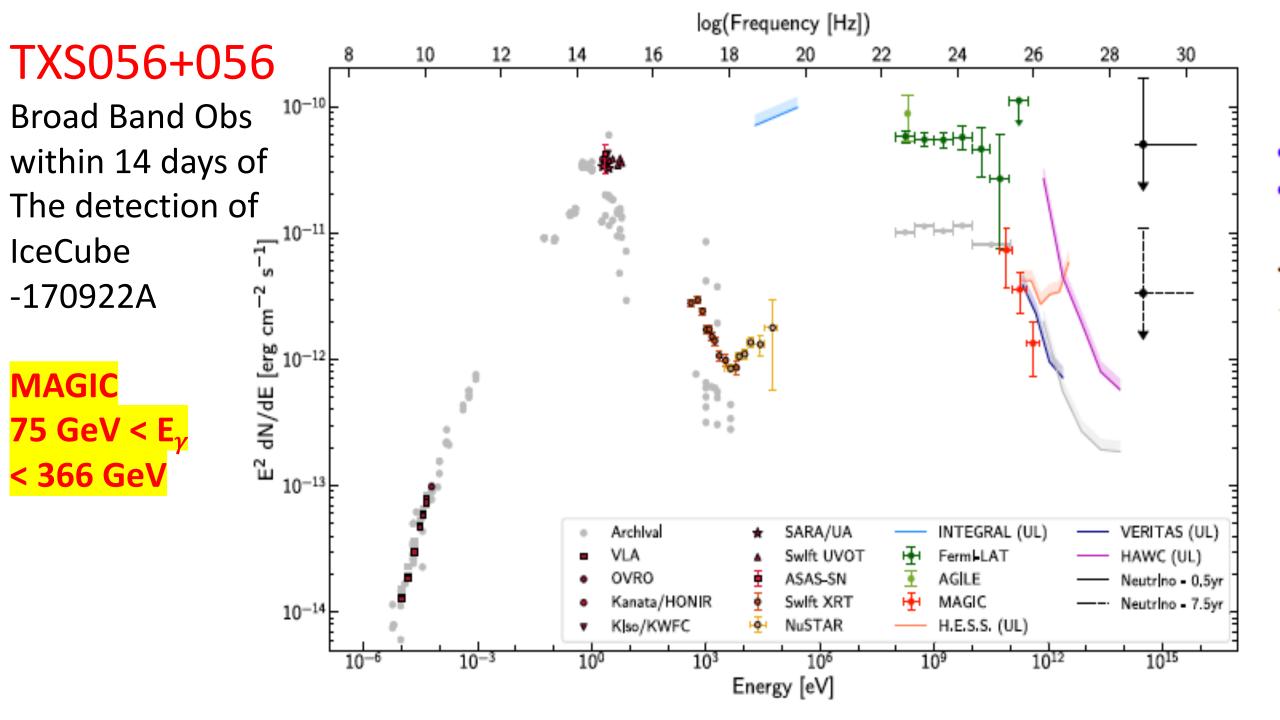


Introduction

On 22nd of September 2017, IceCube neutrino telescope in South Pole detected a track-like neutrino event (muon neutrino) with energy ~ 290 TeV (IceCube-170922A).

For the first time

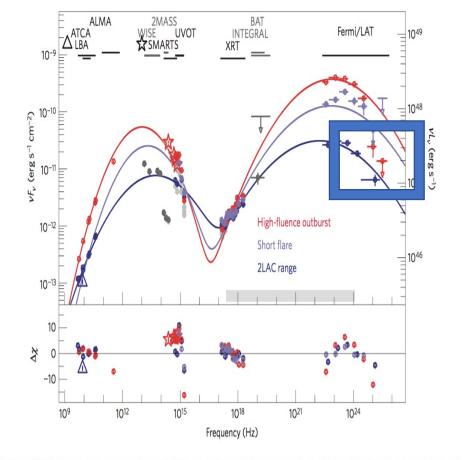

- Extensive follow-up observation from Radio to TeV ⇒ Enhanced emission in all these energy bands.
- Fermi-LAT (satellite) observed high state in GeV energy.

HESS and VERITAS observations

- On September 23, ~4 hr after the neutrino alert, HESS observed for 1.3 hr
- VERITAS observed for 1 hr in the direction of the source after ~12 hr of the IceCube alert
- Subsequent nights additional observations by both
- No Success

MAGIC Observation

- On September 28, MAGIC observed VHE gamma-rays (> 100 GeV) from TXS 0506+056 for the first time
- This neutrino event is spatially and temporally associated with a Blazar TXS 056+056 (z=0.3365) which was in a flaring state in gamma-rays at that vary moment.
- Direct association between neutrino event IceCube-170922A and a point source TXS 0506+056
- Probably direct evidence →Blazars (AGN) can accelerate HECRs and produce neutrinos from py and/or pp interactions !!!



Previous Observations-I: Nature 12, 807 (2016)

Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

M. Kadler^{1*}, F. Krauß^{1,2}, K. Mannheim¹, R. Ojha^{3,4,5}, C. Müller^{1,6}, R. Schulz^{1,2}, G. Anton⁷, W. Baumgartner³, T. Beuchert^{1,2}, S. Buson^{8,9}, B. Carpenter⁵, T. Eberl⁷, P. G. Edwards¹⁰, D. Eisenacher Glawion¹, D. Elsässer¹, N. Gehrels³, C. Gräfe^{1,2}, S. Gulyaev¹¹, H. Hase¹², S. Horiuchi¹³, C. W. James⁷, A. Kappes¹, A. Kappes⁷, U. Katz⁷, A. Kreikenbohm^{1,2}, M. Kreter^{1,7}, I. Kreykenbohm², M. Langejahn^{1,2}, K. Leiter^{1,2}, E. Litzinger^{1,2}, F. Longo^{14,15}, J. E. J. Lovell¹⁶, J. McEnery³, T. Natusch¹¹, C. Phillips¹⁰, C. Plötz¹², J. Quick¹⁷, E. Ros^{18,19,20}, F. W. Stecker^{3,21}, T. Steinbring^{1,2}, J. Stevens¹⁰, D. J. Thompson³, J. Trüstedt^{1,2}, A. K. Tzioumis¹⁰, S. Weston¹¹, J. Wilms² and J. A. Zensus¹⁸

B 2 | Dynamic SED of PKS B1424-418. The multi-epoch SEDs are fitted with two log parabolas for the 2LAC period (purple), the short 2010 flar

□In 2016 reported a PeV neutrino event from the Blazar PKS B1424-418 (!!), detected by IceCube. A shower event (angular error 16°)

3/24/17

Previous Observations-II:

- □2017 Lucareli et al. Reported a gamma-ray precursor flare with AGILE,
- Coincidence with IceCube neutrino event but the significance was very marginal (AGILE (Astro-Rivelatore Gamma a Immagini Leggero) is an X-ray and Gamma ray astronomical satellite of the Italian Space Agency (ASI) 30 MeV-50 GeV).

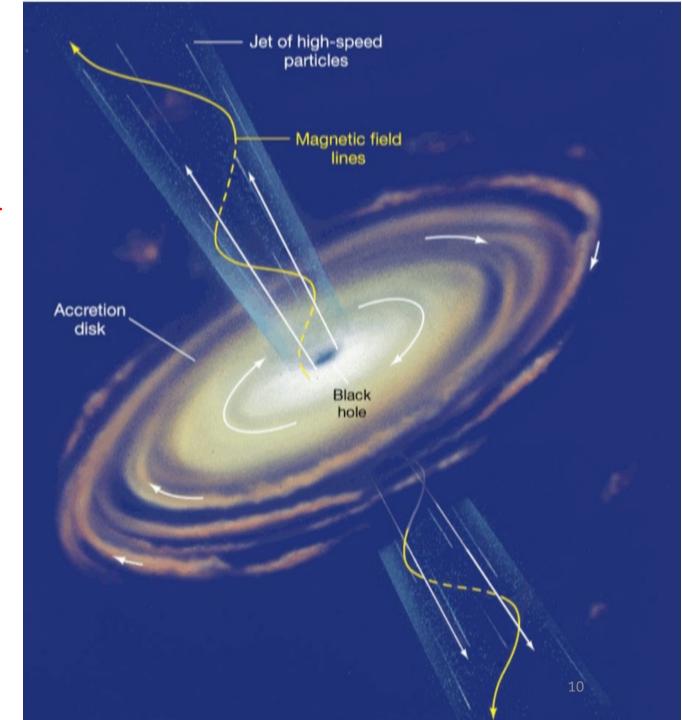
AGILE Detection of a Candidate Gamma-Ray Precursor to the ICECUBE-160731 Neutrino Event

F. Lucarelli^{1,2}, C. Pittori^{1,2}, F. Verrecchia^{1,2}, I. Donnarumma³, M. Tavani^{4,5,6}, A. Bulgarelli⁷, A. Giuliani⁸, L. A. Antonelli^{1,2}, P. Caraveo⁸, P. W. Cattaneo⁹Show full author list

Published 2017 September 8 • © 2017. The American Astronomical Society. All rights reserved.

The Astrophysical Journal, Volume 846, Number 2

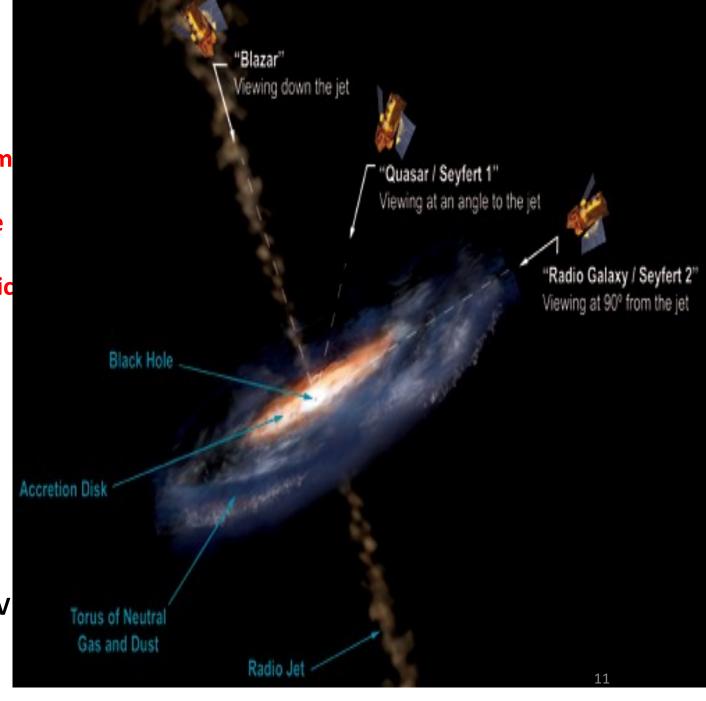
Association of IceCube-170922A with blazar TXS 0506+056 provides direct evidence that AGN/Blazar can accelerate high energy CRs and produce neutrinos from pp and/or py interactions.

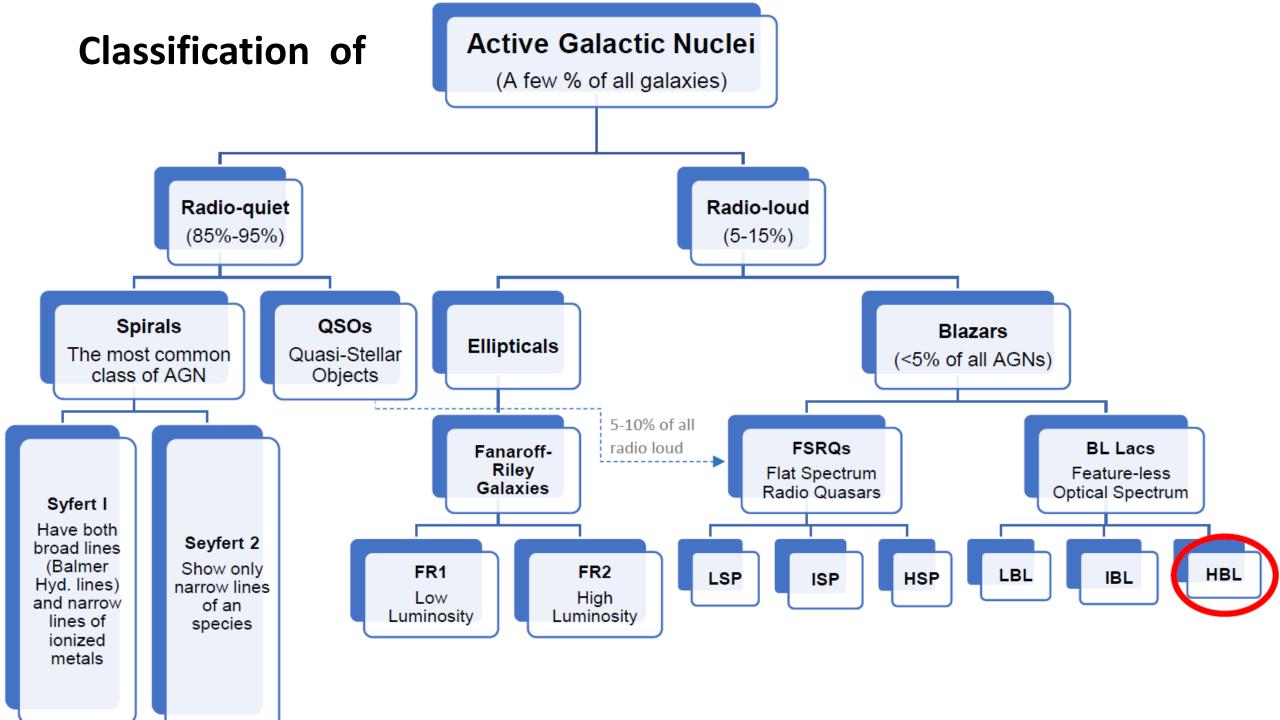

We have to understand What really Blazars are ?

What is a Blazar?

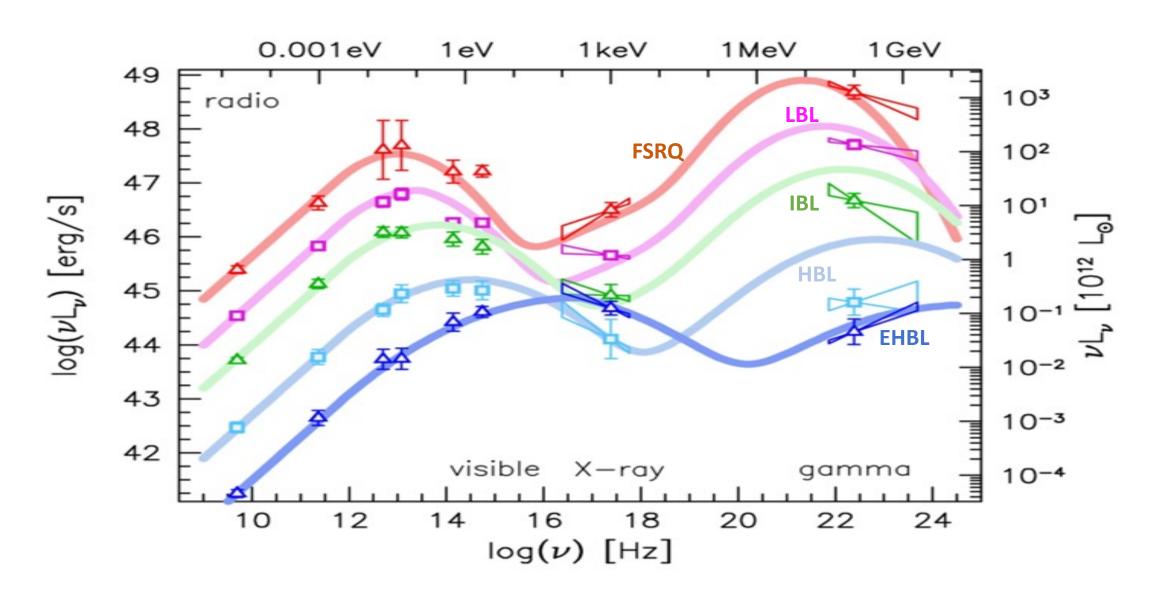
Blazar is a subclass of Active Galactic Nuclei (AGNs)

- AGN emits EM radiation and its spectrum span from radio to gammarays
- A super massive BH is believed to sit at the center of the AGN surrounded by an accretion disk.
- Oppositely directed Jets ⊥ to accretion disk .
- Unification scheme of AGN: Blazars and Radio galaxies are same objects viewed at different angles w.r.t. jet axis.



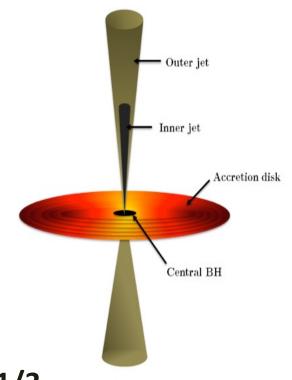

Blazars

- Nonthermal spectra,
- Rapid variability across the entire em spectrum (Radio to γ-Ray)
- Highly relativistic plasma jet pointing along the
- line of sight to the observer.
- Small viewing angle of the jet, strong relativistic effects
- Boosting of the emitted power
- Shortening of the time scale (minutes)


Reason to Study these Objects:

- ☐ Energy extraction mechanisms from the central supermassive Black Hole
- Physical properties of the Astrophysical Jets
- ☐ Accleration of the charged particles in the Jet
- Production of UHECRs, VHE Neutrinos, multi-TeV gamma-rays etc.
- ☐ Constraint the Extragalactic Background Light (EBL).

AGN spectrum?


In the blazar jet environment to produce these very high energy neutrinos, we must satisfy the following time scales:

$$t'_{dyn} < t'_{acc} < t'_{p\gamma}$$

Photohadronic scenario

To produce pions through Δ-resonance

$$p+\gamma \rightarrow \Delta^+ \rightarrow \left\{ \begin{array}{c} p\pi^0 \rightarrow p\gamma\gamma & \text{fraction 2/3} \\ n\pi^+ \rightarrow ne^+ v_e v_\mu \overline{v}_\mu & \text{fraction 1/3.} \end{array} \right.$$

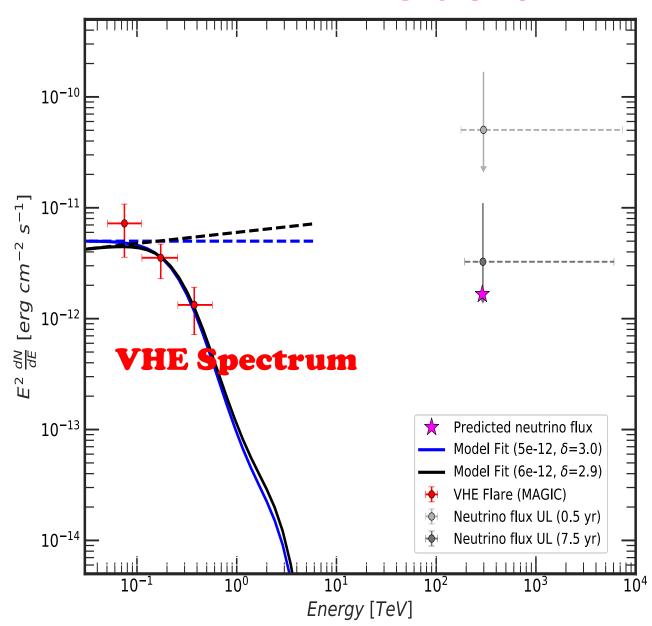
$$t'_{dyn}$$
= $R'_{f} \approx 3.34\ 104\ R'_{f,15}\ {
m sec}$

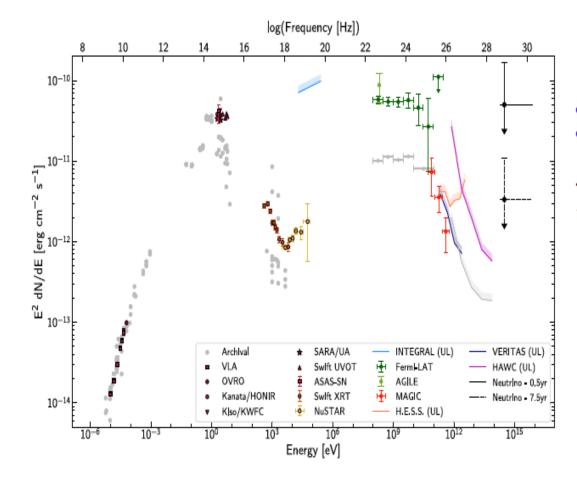
 $t'acc \approx 3.9104 \text{ sec}$ for $E'_p = 352 \text{ TeV}$, B'=1 GeV

 $T'_{p\gamma} = 6.65 \ 10^6 \ \text{sec}$

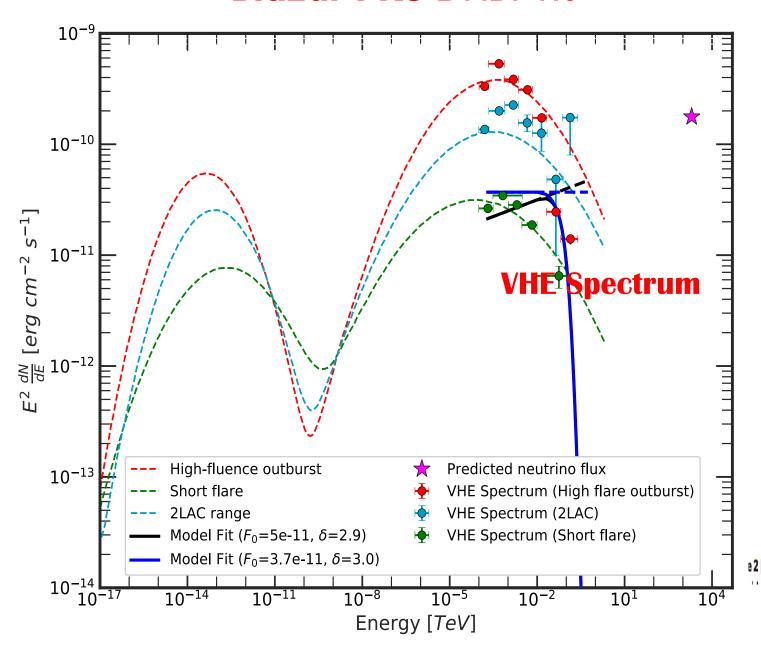
We assume that the VHE neutrinos are produced during the very high energy flaring state of TXS 0506+056 from the π + decay and during this flaring epoch we have $2.5 \le \delta \le 2.6$. Solving for Av gives

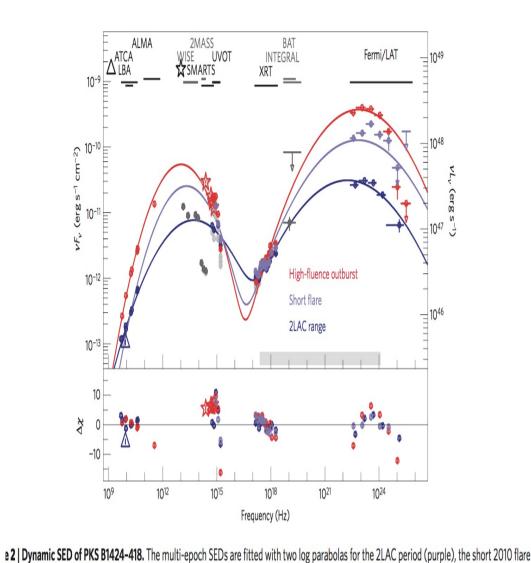
$$N_{\nu} = T \int_{E_1^*}^{E_2^*} \frac{dN}{dE_{\nu}} A_{eff}(E_{\nu}) dE_{\nu}, \qquad \textbf{38 TeV} \leq E_{\nu} \leq 7 \ \textit{PeV}$$


T is the observed time period, $E_{1,2}^* = E_{1,2}(1+z)$ and A_{eff} is the effective area of


Neutrino interaction

$$\delta = 2.5, 2.6; E_v = 290 \, TeV; Aeff for muon neutrino$$


$$rac{dN}{dE_{
u}} = A_{
u} \left(rac{E_{
u}}{E_0}
ight)^{-\delta+1} \qquad A_{
u} \simeq rac{1}{T} imes egin{dcases} 5.0 imes 10^{-10} \, \mathrm{erg^{-1}cm^{-2}}, & \delta = 2.5 \ 5.9 imes 10^{-10} \, \mathrm{erg^{-1}cm^{-2}}, & \delta = 2.6 \end{cases}.$$


MAGIC OBSERVATION OF TXS 0506+056

Blazar PKS B1424-418

TXS 0506+056

T (days)	δ	$A_{ u}$	$F_{ u}(290 TeV)$	$F_{ u}^{int}$
19	2.5	3.06×10^{-16}	1.34×10^{-11}	1.23×10^{-10}
	2.6	3.60×10^{-16}	1.41×10^{-11}	1.12×10^{-10}
60	2.5	1.14×10^{-16}	4.23×10^{-12}	3.90×10^{-11}
	2.6	1.32×10^{-16}	4.48×10^{-12}	3.55×10^{-11}
158	2.5	3.67×10^{-17}	1.61×10^{-12}	1.48×10^{-11}
	2.6	4.33×10^{-17}	1.70×10^{-12}	1.35×10^{-11}
360	2.5	1.61×10^{-18}	7.05×10^{-13}	6.49×10^{-12}
	2.6	1.90×10^{-17}	7.47×10^{-12}	5.91×10^{-12}

TABLE I. The neutrino normalization constant A_{ν} , neutrino flux at $E_{\nu} = 290$ TeV $F_{\nu}(290 \, TeV)$ and the integrated neutrino flux F_{ν}^{int} are shown for $\delta = 2.5$ and 2.6 at different time windows. The A_{ν} is expressed in units of erg⁻¹cm⁻² and the fluxes are given in units of erg⁻¹cm⁻²s⁻¹.

Blazar PKS B1424-418

T (days)	δ	$A_ u$	$F_{ u}(2PeV)$
288	2.5	1.68×10^{-15}	1.93×10^{-10}
	2.6	1.87×10^{-15}	1.60×10^{-10}
988	2.5	4.90×10^{-16}	5.62×10^{-11}
	2.6	5.47×10^{-16}	4.65×10^{-11}

TABLE II. The neutrino normalization constant A_{ν} , neutrino flux at $E_{\nu}=2$ PeV the integrated neutrino flux F_{ν}^{int} are shown for $\delta=2.5$ and 2.6 at different time units of A_{ν} and the fluxes are the same as given in Table 1.

Conclusions

- VHE gamma-ray observed by MAGIC can be explained very well by Photohadronic model explains.
- As the 290 TeV neutrino event was observed 6 days prior to the neutrino event, we argue that the flaring must be in a very high state during the neutrino emission period $2.5 \le \delta \le 2.6$.
- Although, the IceCube-170922A neutrino event and the flaring of the blazar TXS 0506+056 are found to be correlated, further observation of neutrinos from blazars and the follow-up observations in VHE gamma-rays as well as in lower wavelenghts are necessary to establish a definite connection between them. This will also establish AGN as sources of high energy cosmic rays.

Same conclusions for PKS B1424-418

Thank Mou