Sterile Neutrino Dark Matter and Neutrino Self-interaction

Yue Zhang

Carleton University NuDM-2022, Sharm El Sheikh, Egypt

Outline

Introduce a SM gauge singlet fermion and mix it with neutrinos

$$v_4 = \cos\vartheta \, v_s + \sin\vartheta \, v_a$$

 v_4 is the sterile neutrino dark matter. Flavor eigenstates: v_a active, weakly interacting; v_s pure singlet. ϑ is vacuum mixing angle.

Relic abundance target (100% of dark matter)

Experimental probes

Non-Thermal Relic

Fully thermalizing v₄ with SM sector overclose the universe:

$$\Omega_4 \sim 10 \left(rac{m_4}{ ext{keV}}
ight)$$

Fermion v₄ must be heavier than keV scale (Tremaine, Gunn 1979).

Must be produced in a non-thermal way with a small $\vartheta \ll 1$.

Dodelson-Widrow Mechanism

Tiny mixing angle ϑ controls the relic density.

hep-ph/9303287

Two time scales:

In the thermal bath, neutrino after produced remains coherent state until destroyed.

In between, active-sterile neutrino oscillation occurs.

Key Production Equation

$$\frac{df_4}{d\log(1/T)} = \frac{\Gamma}{2H} P_{\nu_a \to \nu_4} f_a$$

 Γ/H : Counts number of cycles for the active-sterile oscillation process to repeat before neutrino decoupling.

Oscillation probability per cycle:

$$P_{\nu_{a} \rightarrow \nu_{4}} = \frac{\Delta^{2} \sin^{2} 2\vartheta}{\Delta^{2} \sin^{2} 2\vartheta + \Gamma^{2}/4 + (\Delta \cos 2\vartheta - V_{T})^{2}}$$

Production Time Window

Already Severely Constrained

Abazajian (1705.01837)

PS: other dark matter candidates

those still live well

A Simple Idea

Intuition: compensate smaller mixing with larger reaction rate.

Requirement: new physics enhances Γ but does not introduce additional radiative decay mode.

Particles in early universe plasma T~100 MeV: e, μ, u, d, γ, v

Neutrino Self Interaction

ν Ζ, φ? V V

Never directly measured in labs. Allowed to be much stronger.

Consider a new scalar that dominantly couples to neutrinos

$$\mathcal{L}_{int} = \lambda \nu \nu \varphi + h.c.$$

Production via a Heavy Mediator

Production via a Light Mediator

When $T > m_{\varphi}$, φ exists in thermal bath, decays to v_4 . $\Gamma_{decay} \sim \lambda^2$, more important than scattering for $\lambda << 1$.

Opens Up Wide Window

de Gouvêa, Sen, Tangarife, YZ (1910.04901)

Dark Matter Relic Target

de Gouvêa, Sen, Tangarife, YZ (1910.04901)

Testing the Idea

Particle Decays

Barger, Keung, Pakvasa (1982) Berryman, de Gouvêa, Kelly, YZ (1802.00009) Brdar, Lindner, Vogl, Xu (2003.05339)

Mono-Neutrino Signal

Missing energy signature can be searched for at the upcoming DUNE (near detector) and Forward physics facility at LHC.

Neutrino Experiments Coverage

Beam neutrinos most useful for constraining v_{μ} self interaction, along with v_{s} - v_{μ} mixing.

Kelly, YZ (1901.01259); Kelly, Kling, Tuckler, YZ (2111.05868)

Core-collapse Supernova

- Same fundamental process as dark matter production in early universe.
- Similar environment.
- Excessive cooling due to $\varphi \rightarrow vv_4$ decay below the "neutrino sphere".

Constraint from SN 1987A

SN most useful for constraining v_e self interaction, along with v_s - v_e mixing.

Chen, Sen, Tangarife, Tuckler, YZ (2207.14300)

Milky Satellite Galaxies

DM production mechanism not only predicts a number (Ω), but also a phase space distribution f(q) — matter power spectrum.

DES experiment set WDM mass > 6.5 keV. (arXiv:2008.00022)

Stronger limit expected here (~30 keV) because here $T_{v4} >> T_{WDM}$.

Flavour Independent Constraint

A remarkable finding: MW satellites, X-ray, and Z decay together exclude strong neutrino self-interaction scenario (case A: heavy mediator).

An, Gluscevic, Nadler, YZ (to appear soon)

Conclusion

This talk discusses a novel neutrino-dark matter connection.

Active neutrino self-interaction via a light mediator can play instrumental role in the origin of sterile neutrino dark matter.

A number upcoming particle, astrophysical and cosmological experiments can be used to probe such a nice target.

Thanks!